Updates and challenges in detector technology: Detectors used in radiotherapy audits

Stephen F. Kry, PhD DABR CMQ FAAPM
IDOS
IAEA 2019
Disclosure

• No conflicts related to this presentation
Scope of dosimetry audits

• Range of audit complexity:
 – Reference beam output verification
 – Measurements of basic dosimetry parameters
 – End-to-end complex radiotherapy measures

• There must be accuracy
 – Pass test = good radiotherapy quality
 – Fail test = bad radiotherapy quality

• There must be consistency
 – Day to day, result is the same
 – Different auditing groups, conducting things differently, should produce the same result
Challenge

• How accurately/consistently do detectors perform
 – e.g., TLD vs. alanine (straight forward comparison)
 – Point dose vs. planar (more complicated?)

• Not just detector, must also consider its use

• Detector protocols
 – TRS-398 vs. TG-51

• Readout procedures
 – Calibration, reference conditions, correction factors….
 – Well defined for ion chambers, what about TLD, arrays, etc.

• Analysis methods
 – Point dose measurements yield percent difference. This is pretty clear.
 – Planar/volumetric measurement: Myriad flavours of gamma analysis
• Measurements of reference beam output IROC vs. ACDS
 – Same machine, same time
 – Different Farmer-type ion chambers
 – Different calibration protocols
 • TG-51 vs. TRS-398
 – Different water tanks
 – Different setups

<table>
<thead>
<tr>
<th>Energy</th>
<th>IROC:Facility</th>
<th>ACDS:Facility</th>
<th>Difference IROC-ACDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.011</td>
<td>1.010</td>
<td>0.1%</td>
</tr>
<tr>
<td>10FFF</td>
<td>1.009</td>
<td>1.016</td>
<td>-0.7%</td>
</tr>
<tr>
<td>18</td>
<td>1.012</td>
<td>1.012</td>
<td>0.0%</td>
</tr>
<tr>
<td>Electrons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.991</td>
<td>0.998</td>
<td>-0.7%</td>
</tr>
<tr>
<td>9</td>
<td>0.989</td>
<td>0.995</td>
<td>-0.6%</td>
</tr>
<tr>
<td>12</td>
<td>0.990</td>
<td>0.995</td>
<td>-0.5%</td>
</tr>
<tr>
<td>15</td>
<td>0.988</td>
<td>0.993</td>
<td>-0.5%</td>
</tr>
<tr>
<td>18</td>
<td>1.002</td>
<td>0.994</td>
<td>0.8%</td>
</tr>
</tbody>
</table>
More success

- Reference conditions
- Passive dosimeters
- Intercomparisons (2012+)
 - Different detectors
 - Different readout procedures
- Results are consistent
 - Equivalent within uncertainty
- Many accurate and precise options
Added complexity

• What about planar dosimetry?

• On-site audits – arrays may be used
• End-to-end audits of radiotherapy delivery, planar dosimetry is important.
 – Film is a standard tool for remote dosimetry

• Now need to worry about dosimeter performance and analysis
Dosimeter consistency: Film

- Impact on gamma pass rate vs Noise
 - 1%, 2% randomly introduced per pixel
- Scan resolution
- Software (OmnioPro, DoseLab)
- Reference vs evaluated dataset
- 10 clinical IMRT plans
 - 6 passed IMRT QA
 - 4 failed IMRT QA
Dosimeter consistency: Film

- Noise – affects % of pixels passing gamma
 - Depends on which dataset is reference
 - Depends on which software package is used (data processing)
Dig Deeper into Gamma analysis

- 3 plans with numerous simulated errors: 17 error datasets
 - noise, errors in: MLC, dose calibration, collimator angle
- Virtual/computational dataset
 - Doesn’t include measurement or processing uncertainty
- Analysis controlled
- Just different software
 - 6 groups performed analysis
Controller Evaluation!

- Evaluated for gamma using consistent parameters
 - Global normalization, 20% low dose threshold, un-normalized datasets, measured = reference.
- Different software, different physical locations, different people

![Graph showing pass rate for different groups and thresholds](image)

- 3%/3mm
- 2%/2mm
Key thoughts

• Gamma is computationally hard to compute, so lots of shortcuts. Hence different values even for the same input data.

• This is not well managed or understood. AAPM TG-218 report on gamma analysis doesn’t differentiate gamma criteria based on gamma calculation implementation.

• Based on previous slides, easy to understand that gamma has not been found to correlate with plan quality.
Beyond just gamma analysis

- 24 unmodified clinical plans
 - Some good, some concerning
- Doses measured with ion chamber readings in a body phantom
- All plans delivered to a range of devices
 - Single ion chamber
 - Map check
 - Arc Check
 - Film
- Irradiation and analysis methods varied

<table>
<thead>
<tr>
<th>Plan</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Acceptable (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td></td>
</tr>
<tr>
<td>GI 1</td>
<td>4.2%</td>
<td>6.0%</td>
<td>5.9%</td>
<td>5.7%</td>
<td>6.1%</td>
<td>3.5%</td>
<td>3.1%</td>
<td>5.4%</td>
<td>0.7%</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>GI 2</td>
<td>5.1%</td>
<td>6.6%</td>
<td>4.8%</td>
<td>1.2%</td>
<td>2.0%</td>
<td>6.2%</td>
<td>5.4%</td>
<td>5.2%</td>
<td>1.4%</td>
<td>2.3%</td>
<td>N</td>
</tr>
<tr>
<td>GI 3</td>
<td>-0.7%</td>
<td>2.0%</td>
<td>1.2%</td>
<td>5.5%</td>
<td>5.1%</td>
<td>-1.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>GI 4</td>
<td>-0.4%</td>
<td>-0.1%</td>
<td>0.8%</td>
<td>0.9%</td>
<td>0.7%</td>
<td>1.0%</td>
<td>1.3%</td>
<td>0.8%</td>
<td>1.0%</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>GI 5</td>
<td>-2.7%</td>
<td>-1.2%</td>
<td>-0.4%</td>
<td>-3.2%</td>
<td>-1.0%</td>
<td>-2.1%</td>
<td>-1.8%</td>
<td>-0.7%</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

Elizabeth M. McKenzie
Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas, 77030

Peter A. Baller
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

Francesco C. Stingo
Department of Biomathematics, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

Jeremy Jonas
Pomer Hospital, Denver, Colorado 80230

David S. Followill and Stephen F. Kry

1 Core at Houston and Department of Radiation Physics, The University of Texas Health Science Center Houston, Houston, Texas 77030
When comparing devices, we should have:
- 100% sensitivity, 100% specificity
- “Pass” vs. “Fail” should be consistent

Varied with
- Software
- Device
- How device used
 - Composite vs. field by field
Summary

• Point dosimeters perform consistently under normal conditions
 – Consistent across numerous detectors
 – Consistent across different calibration protocols
 – Challenging cases exist (small fields)

• Planar dosimeters involve more complex analysis and interpretation
 – Usually use computational analysis tools
 – Different programs handle data differently

• Gamma analysis is a major concern
 – Sensitive to noise and resolution – i.e., device characteristics and handling
 – Sensitive to software implementations of gamma calculation
 – Sensitive to detector
 – Sensitive to use of detector
There is substantial uncertainty when trying to define an “acceptable/unacceptable” audit result.

- Result depends on device, irradiation technique, software, noise, etc.
- Documented (not solved) for just the gamma analysis step within audit framework
- Less well documented for different devices/irradiation techniques
 - Ongoing research

Major issue.

- For audits, this impedes consistent interpretation of audit results and intercomparisons between audit groups (accuracy and consistency).
- Not a stationary problem: detectors and software evolve.
- Global Harmonisation Group is trying to tackle this (rtqaharmonization.org)
Questions?