Design and performance of an MR-compatible water calorimeter

M. D’Souzaa,*, H. Nusrata, J. Renaudb, G. Petersonc, N. Entezaria, A. Sarfehniaa,c

a Ryerson, Department of Physics, Toronto, Canada
b National Research Council, Canada, Ottawa, Canada
c University of Toronto, Department of Radiation Oncology, Toronto, Canada
What is water calorimetry

• Method for obtaining absolute dose to water
• The radiation induced milli-kelvin temperature rise is measured
• Absolute dose at a point can then be determined

\[D = C_{w,p} \cdot \Delta T \cdot \prod k_i \]
MR-linac

- Elekta Unity
 - 7 MV beam
 - 1.5 T MRI

- Provides real time imaging during treatment

- Different Dosimetric impact
 - Due to the Lorentz force
 - Particularly pronounced around air cavities
Goals

- Optimize and construct an MR-compatible water calorimeter
- Measure absorbed dose in the presence of a magnetic field
Optimization of calorimeter

- FEM analysis (COMSOL Multiphysics) was used to simulate heat transfer within calorimeter
- Simulations looked at
 - Calorimeter design
 - Materials used
 - Sensitivity to thermal variations
Optimization of calorimeter design
Optimization of insulation materials
Optimization of glass vessel

- Point of measurement contained inside glass vessel
- FEM analysis was used to optimize k_{ht}
- Parameters varied included
 - Top glass thickness
 - Bottom glass thickness
 - Vessel height
- Thermistor position inside vessel was also studied

Final design
Imaging
• Calorimeter placed under an Elekta Versa 6FFF beam
• Measurements (n=30) yielded a 0.06% standard error
• Dose measured agreed with NRC calibrated ion chamber to within 0.3%
Performance in MR-linac

- Calorimeter was loaded on railing of couch
 - No external modifications needed
- Electronics placed between RF door and linac door
- In presence of magnetic field
 - Standard error: 0.19%
 - Agreed with NRC calibrated ion chamber to within 1.5%
Summary of results
Conclusions

• A portable MR-compatible water calorimeter was successfully built
• It can be positioned using imaging (KV, CBCT, MR)
• Successfully measured absorbed dose in Elekta Versa and Elekta Unity
Acknowledgements

Sunnybrook
Arman Sarfehnia
Viktor Iakovenko
Phillip Au
Gerrard Peterson
Harry Easton

Ryerson
Humza Nusrat
Niloufar Entezari
Carl Kumaradas
James Grafe

NRC
James Renaud
Malcom McEwen
David Marchington