Calibration of Survey Meters by using A Newly Developed Quasi-Monoenergetic of ~190 keV Photon Field:

A Preliminary Result with Back-Scatter Layout

Department of Medical Imaging, Faculty of Health Sciences, UniSZA, Malaysia.
High Energy Accelerator Research Organization (KEK), Japan.
S.M. Tajudin, Y.Namito, T.Sanami, H. Hirayama
Dosimeters to measure ambient dose equivalent rate for photons is calibrated commonly with Am-241 (60 keV) and Cs-137 (662 keV).

due to its long half-life and mono-energy radiation.

To ensure the accuracy of photon dosimeter, it is necessary to determine the response of detector for high energy and low energy.

to know the extent of over-response (or under-response) for energy region of interest ~200 keV photon
~200 keV is missing energy for calibration

Energy (keV)

0 100 200 400 600 800 1000

LOW MIDDLE HIGH

Radio isotope
- Long Half life
 - Am-241 (60)
- Short Half life
 - Ce-139 (166)
 - Cr-51 (321)
 - Cs-137 (662)
 - Co-60 (1275)

X-Ray
- K Fluorescence
- Filtered

Synchrotron

Available option ~200 keV:
- Short $T_{1/2}$ sources
- Broad X-ray beam
- Less affordable
How to obtain 200 keV photon field

Idea:

Backscattered photon has almost constant energy mono-energetic field

“If we choose the Compton-scattered photon to have a scattering angle of 150-180°, its energy range is ~200 keV.”
Uniformity: within 10 % for 10 cm x 10 cm x 10 cm vol.

- Ambient dose rate
- Peak to total ratio
- Uniformity
- Average energy

Back-scatter Layout

Detector to lead (Pb) distance (DPD)

SFD=20 cm

Pb block (10 x 10 x 10 cm³)

Source: Cs-137 of 208 MBq

Iron block (1.4 m x 1.4 m x 0.05 m)

Tested area

Concrete floor
The layout were optimized through calculations and experiments.
\(~200\) keV photon field of B/scatter layout

Calculated photon spectra

- Concrete Floor
- Added Iron

Concrete Cylinder:
- Radius: 1.5 m
- Thickness: 1.0 m

Iron block:
- Square of 1.4x1.4 m
- Thickness: 5 cm

Calculated photon spectra at \(~200\) keV using a backscatter layout with a bare concrete floor and with the addition of a iron square on the floor.

Adding iron on the concrete floor decreases the low energy components of the spectra (<155 keV) by a factor of 3.
Calculated dose rate (µSv/hr) for Cs-137 and Co-60

Common upper dose rate limit for environment dosimeters
~200 keV photon field of Filtered X-ray

Merit of backscattered photon field:
✓ Stable and adequate uniform photon field
✓ Adequate ambient dose rate (Filtered X-rays is too intense)
✓ Easy to obtain
Calibration of CsI(Tl) Survey Meters Using Backscatter Field For Energy Response of:

Horiba PA-1000 & Mr.Gamma A2700.

(0.001 ~ 9.999 μSv/h)
For the backscatter field energy, the responses were normalized to the NaI(Tl) TCS–172 survey meter. NaI(Tl) used as a reference survey meter due to it has energy compensation to display more accurate dose value.
a) Mono-energetic field is newly developed using backscatter layout with affordable intensity gamma source. With the same source (Cs-137; 208 MBq), we could obtain 2 energies for dosimeters calibration by;

1. Direct measurement for 662 keV &
2. Indirect measurement for about ~200 keV (back-scatter layout).

✓ Significant dose rate (3.18 µSv/hr) could be obtained with main peak at 189 KeV; FWHM 4.6%.

b) Several recommended X-ray filters are tested to obtain mono-energetic field around 200 keV. The peak width is larger than the developed backscatter field.
Offer Monte Carlo simulations (1): Rad. Detector

Isotropic source was positioned at 10 cm to the central axis of the surface scintillator.

Wrapping materials were not considered.

Quartz window of 5 mm

2” cylinder

E-mail: suffian@unisza.edu.my
Offer Monte Carlo simulations (2) : Rad. Shielding

Air

Clay (t=2 cm)

Parallel beam

E-mail: suffian@unisza.edu.my
Calibration set-up: (with standard calibration check sources)

Source to detector distance 0.5 m.
0.66 m above the ground.

<table>
<thead>
<tr>
<th>Source</th>
<th>Environmental Scintillation survey meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aloka NaI(Tl)</td>
</tr>
<tr>
<td></td>
<td>Mr. Gamma CsI(Tl)</td>
</tr>
<tr>
<td></td>
<td>Horiba CsI(Tl)</td>
</tr>
<tr>
<td>TCS 171</td>
<td>(bg ~30 µSv/hr)</td>
</tr>
<tr>
<td>A2700</td>
<td>(0.001 - 9.999 µSv/hr)</td>
</tr>
<tr>
<td>PA-1000</td>
<td>(0.001 - 9.999 µSv/hr)</td>
</tr>
<tr>
<td>(0.05 - 3 MeV)</td>
<td>(> 150 keV)</td>
</tr>
<tr>
<td>(> 150 keV)</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>0.082 ± 0.007</td>
</tr>
<tr>
<td>*Cs-137 (208MBq)</td>
<td>1.930 ± 0.014</td>
</tr>
<tr>
<td>Co-60 (149kBq)</td>
<td>0.242 ± 0.011</td>
</tr>
</tbody>
</table>

* measured at distance 3.5m

Dose rate for check sources intensity were corrected by dose rate conversion factor to obtained theoretical dose rate.

<table>
<thead>
<tr>
<th>Sources</th>
<th>Doserate Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(µSv.m².MBq^-1.h^-1)</td>
</tr>
<tr>
<td>Cs-137</td>
<td>0.0927</td>
</tr>
<tr>
<td>Co-60</td>
<td>0.354</td>
</tr>
</tbody>
</table>

ICRP Pub 74

Ratio of measured-to-theory dose rate.

<table>
<thead>
<tr>
<th>Source</th>
<th>Scintillation survey meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aloka NaI(Tl)</td>
</tr>
<tr>
<td></td>
<td>Mr. Gamma CsI(Tl)</td>
</tr>
<tr>
<td></td>
<td>Horiba CsI(Tl)</td>
</tr>
<tr>
<td>TCS 171</td>
<td></td>
</tr>
<tr>
<td>A2700</td>
<td></td>
</tr>
<tr>
<td>PA-1000</td>
<td></td>
</tr>
<tr>
<td>Cs-137 (208MBq)</td>
<td>1.228</td>
</tr>
<tr>
<td>Co-60 (149kBq)</td>
<td>1.336</td>
</tr>
</tbody>
</table>