Monte Carlo calculated correction factors for a proton calorimeter in clinical proton beams

Francesco Romano, David Shipley and Hugo Palmans.

National Physical Laboratory
Teddington, UK

19th June 2019

IDOS 2019, IAEA Headquarters, Vienna, Austria
Quantity of interest in clinical proton beams is **absorbed dose to water** but...

... to date, no primary standards laboratory has a proton or ion beam

Use of an ionization chamber calibrated in a 60Co beam → **beam quality correction factor**

Uncertainties (at 95% CL) on the reference dosimetry of 4.6% for proton beams (ref TRS-398).

TRS 398 → **to calibrate chambers in a similar beam to that which is being used therapeutically.**

New UK code of practice

- to facilitate calibration in proton beams primarily for scanned (but also for scattered beam) delivery modes
- to deliver an *uncertainty* on reference dosimetry for protons of approximately 2% (at 95% CL)
- it will utilise a **primary standard graphite calorimeter** that is robust and **portable enough to be used in the end-user facility**
Formalism based on the new CoP

- Water and graphite calorimeters have been developed & demonstrated in p beams
- **Graphite calorimetry** at NPL

\[
D_g = \left(\frac{E_{\text{rad, core}}}{m_{\text{core}}} \right) \cdot k_{\text{imp}} \cdot k_{\text{non-g}} \cdot k_{\text{gap}} \cdot k_{\text{vol}}
\]

- **\(k_{\text{imp}}\)** → differences in specific heat due to core impurities
- **\(k_{\text{non-g}}\)** → presence of non-graphite materials
- **\(k_{\text{gap}}\)** → for presence of vacuum gaps
- **\(k_{\text{vol}}\)** → dose averaged over the whole core to that at the centre

- Aim: determine \(k_{\text{non-g}}, k_{\text{gap}}\) and \(k_{\text{vol}}\) with Monte Carlo simulations for:
 - monoenergetic pencil beams
 - reference clinical SOBP beams (scanning/passive)
How do we calculate $k_{\text{non}-g}$, k_{gap} and k_{vol}?

- Default modular physics list:
 - Hadronic: QGSP_BIC_HP (Binary Cascade)
 - EM: emstandard_opt4
 - ICRU90 material definitions
 - Production cuts 0.05mm

- Scoring/tracking:
 - Total dose deposited per event
 - Standard deviation \rightarrow SDOM
Correction factors for mono energetic protons

- **3 cm beam diam & 2.0 g/cm² BU:** k_{gap} up to 1.008 (230 MeV)
- **Large beam diam (LSCPE),** k_{gap} within 0.1% of unity for all the energies

- Various disk thickness investigated
- $k_{\text{vol}} \sim 0.997$ at 60 MeV up to ~ 1.003 at 230 MeV
Clinical relevant SOBPs

- According to the new UK Code of Practice (*still in draft*), reference dosimetry has to be carried out in a primary STV (Standard Test Volume) centred at 15 cm depth in water (box $10 \times 10 \times 10 \text{ cm}^3$) and further measurements have to be performed in two secondary STVs, respectively centred at 10 cm and 25 cm.

\[\left[\begin{array}{c} \sum_{i=1}^{N} \frac{w_i D_{i1} + w_i D_{i2} + \ldots + w_i D_{iN}}{D_{i0}} = 100\% \end{array} \right] \]

- Solution of the equation system \rightarrow weights
- Compromise between number of peaks and complexity in solving equations!

Matlab script for weight calculation
Correction factors for the primary STV (centred at 15 cm)

Reciprocity theorem

<table>
<thead>
<tr>
<th>$k_{\text{non-g}}$</th>
<th>k_{gap}</th>
<th>k_{vol}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9988 ± 0.0006</td>
<td>1.0006 ± 0.0004</td>
<td>0.9991 ± 0.0008</td>
</tr>
</tbody>
</table>

- 34 peaks in total \Rightarrow uniformity within 0.2%
- Weights converted to Nb of evts per peak in TOPAS

$k_{\text{non-g}}$, k_{gap} and k_{vol} corrections within 0.1% of unity for the STV-15
Correction factors for the secondary STVs (centred at 10 and 25 cm)

<table>
<thead>
<tr>
<th>STV-10</th>
<th>STV-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{non-g}</td>
<td>k_{gap}</td>
</tr>
<tr>
<td>0.9983 ± 0.0006</td>
<td>1.0008 ± 0.0005</td>
</tr>
</tbody>
</table>

62 peaks in total: uniformity within 0.2%

25 peaks in total: uniformity within 0.2%
Uncertainties for STV (for ripple effect)

\[
\sum_{i=1}^{N} w_i D_{i1} + w_i D_{i2} + \ldots + w_i D_{iN} = 99.3\% = 1, 2, \ldots, N
\]

\[
\begin{align*}
\text{STV-15 data-driven} & \\
k_{\text{non-g}} & k_{\text{gap}} & k_{\text{vol}} \\
0.9984 \pm 0.0005 & 1.0002 \pm 0.0004 & 0.9997 \pm 0.0009 \\
\end{align*}
\]

original STV-15

\[
\begin{align*}
\text{k_{non-g}} & \text{ k_{gap}} & \text{k_{vol}} \\
0.9988 \pm 0.0006 & 1.0006 \pm 0.0004 & 0.9991 \pm 0.0008 \\
\end{align*}
\]
Correction factors for a passive beamline (CCC)

- Passive beam line for eye melanoma treatment with 62 MeV proton beams at the Clatterbridge Cancer Centre

Correction Factors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_{\text{non-g}}$</td>
<td>0.9998 ± 0.0008</td>
</tr>
<tr>
<td>k_{gap}</td>
<td>1.0000 ± 0.0005</td>
</tr>
<tr>
<td>k_{vol}</td>
<td>0.974 ± 0.001</td>
</tr>
</tbody>
</table>

Uncertainties (ripple effect)

- $k_{\text{non-g}}$: 0.9998 ± 0.0009
- k_{gap}: 1.0003 ± 0.0007
- k_{vol}: 0.974 ± 0.001
Summary

- Overview of the **formalism** for determining absorbed dose to water in proton beams based on a new UK code of practice using a **portable primary standard graphite calorimeter**.
- Description of methods for determining the $k_{\text{non-g}}$, k_{gap} and k_{vol} corrections with TOPAS (Geant4) for mono-energetic and clinical relevant beams.
- Description of a robust and versatile method for weight calculations:
 - Simulating an ideal SOBP with uniformity < 0.2%
 - Realistically reproducing fluctuations in the modulation region (ripple effect on corrections)

For mono-energetic beams (LSCPE):
- $k_{\text{non-g}}$ and k_{gap} within 0.1% of unity
- k_{vol} varies from -0.3% less than unity at 60 MeV to +0.3% above unity at 230 MeV

For the primary and secondary STVs:
- $k_{\text{non-g}}$, k_{gap} and k_{vol} were found to be within 0.1% for the primary STV
- no significant variations for all the three different STVs within the statistical uncertainties
- no significant variations due to ripple effect within the statistical uncertainties

For CCC passive beams:
- $k_{\text{non-g}}$ and k_{gap} within 0.1% of unity $k_{\text{vol}} = 0.974 \pm 0.001$
Thank you