Imaging ischemic heart disease: role of SPECT and PET. Focus on Patients with Known CAD

Hein J. Verberne

Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands

International Conference on Integrated Medical Imaging in Cardiovascular Diseases (IMIC 2016)
Disclosure

• Nothing to disclose
Learning objectives

• Discuss the application of appropriate use criteria for SPECT and PET in ischemic heart disease

• Examine new insights in myocardial perfusion imaging: future
Goals

• What is “known” coronary artery disease (CAD):
 – Definition

• What is the evidence for what indication:
 – Ischemia detection vs. prognosis

• Clinical implications:
 – How to use the (imaging) findings
Definition

• Known CAD implies:
 – Already established:
 • Guidelines:
 – Stable Coronary Artery Disease (ESC 2013)
 – Stable Ischemic Heart Disease (ACCF 2012)

• Adult patients:
 – with stable known IHD (including angiographically proven, post MI), including recurrent (renewed-onset) chest pain and patients with stable pain syndromes.

ESC Eur Heart J 2013;34:2949–3003
ACCF Circulation 2012;126:e354-e471
Definition

• Stable angina pectoris or other symptoms felt to be related to coronary artery disease (CAD) such as dyspnea;

• Previously symptomatic with known obstructive or non-obstructive CAD, who have become asymptomatic with treatment and need (regular) follow-up.

ESC Eur Heart J 2013;34:2949–3003
ACCF Circulation 2012;126:e354-e471
Definition

• Stable angina pectoris or other symptoms felt to be related to coronary artery disease (CAD) such as dyspnea;

• Previously symptomatic with known obstructive or non-obstructive CAD, who have become asymptomatic with treatment and need (regular) follow-up.

ESC Eur Heart J 2013;34:2949–3003
ACCF Circulation 2012;126:e354-e471
Main features of SCAD

Pathogenesis
- Stable anatomical atherosclerotic and/or functional alterations of epicardial vessels and/or microcirculation

Natural history
- Stable symptomatic or asymptomatic phases which may be interrupted by ACS

Mechanisms of myocardial ischaemia
- Fixed or dynamic stenoses of epicardial coronary arteries;
- Microvascular dysfunction;
- Focal or diffuse epicardial coronary spasm;
- Overlap of above mechanisms in the same patient and may change over time.
Prognosis

• stable CAD:
 – individual’s prognosis can vary considerably:
 • Reduction of Atherothrombosis for Continued Health (REACH) registry:
 – included very high-risk patients, many with peripheral arterial disease or previous MI and almost 50% with diabetes.
 • Annual mortality rate of 2.9%.

• Annual mortality rate in patients with non-obstructive plaques is 0.63%.

JAMA 2007;297:1197–1206
Prognosis

• Therefore important to identify:
 – those patients with a less severe form of disease and a good prognosis (i.e. no unnecessary tests and revascularization procedures).
 – those patients with more severe forms of disease, who may benefit from more aggressive investigation and—potentially—intervention, including revascularization.
Pre test probability

<table>
<thead>
<tr>
<th>Age</th>
<th>Typical angina</th>
<th>Atypical angina</th>
<th>Non-anginal pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>30‒39</td>
<td>59</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>40‒49</td>
<td>69</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>50‒59</td>
<td>77</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>60‒69</td>
<td>84</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>70‒79</td>
<td>89</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>>80</td>
<td>93</td>
<td>76</td>
<td>78</td>
</tr>
</tbody>
</table>

- **White:** pre-test probability: <15% ➔ done
- **Blue:** pre-test probability: 15-65% ➔ consider non-invasive testing
- **Light red:** pre-test probability: 66-85% ➔ non-invasive testing
- **Red:** pre-test probability: >85% ➔ non-invasive testing

\[\text{Genders et al. Eur Heart J 2011;32:1316–1330} \]
Data
Understanding the evidence

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Data derived from multiple randomized clinical trials or meta-analyses.</td>
</tr>
<tr>
<td>B</td>
<td>Data derived from a single randomized clinical trial or large non-randomized studies.</td>
</tr>
<tr>
<td>C</td>
<td>Consensus of opinion of the experts and/or small studies, retrospective studies, registries.</td>
</tr>
</tbody>
</table>
Understanding the evidence

<table>
<thead>
<tr>
<th>Classes of recommendations</th>
<th>Definition</th>
<th>Suggested wording to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.</td>
<td>Is recommended/is indicated</td>
</tr>
<tr>
<td>Class II</td>
<td>Conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of the given treatment or procedure.</td>
<td></td>
</tr>
<tr>
<td>Class IIa</td>
<td>Weight of evidence/opinion is in favour of usefulness/efficacy.</td>
<td>Should be considered</td>
</tr>
<tr>
<td>Class IIb</td>
<td>Usefulness/efficacy is less well established by evidence/opinion.</td>
<td>May be considered</td>
</tr>
<tr>
<td>Class III</td>
<td>Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.</td>
<td>Is not recommended</td>
</tr>
</tbody>
</table>
Understanding the evidence

• An appropriate imaging study:
 – expected incremental information in combination with clinical judgment:
 – exceeds the expected negative consequences by a sufficiently wide margin for a specific indication that the procedure is generally considered acceptable care and a reasonable approach for the indication.

ACCF etc. JACC 2009;53:2201-29
Understanding the evidence

– Score 7–9:
 • Appropriate (test is generally acceptable and is a reasonable approach for the indication).

– Score 4–6:
 • Uncertain (test may be generally acceptable and may be a reasonable approach for the indication).

– Score 1–3:
 • Inappropriate (test is not generally acceptable and is not a reasonable approach for the indication).
Understanding the evidence

– Score 7–9:
 • Appropriate (test is generally acceptable and is a reasonable approach for the indication).

– Score 4–6:
 • Uncertain (test may be generally acceptable and may be a reasonable approach for the indication).

– Score 1–3:
 • Inappropriate (test is not generally acceptable and is not a reasonable approach for the indication).

ACCF etc. JACC 2009;53:2201-29

Known CAD: Nuclear Cardiology
IMIC 2016
Appropriate use criteria

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment With Prior Test Results and/or Known Chronic Stable CAD Prior Noninvasive Evaluation</td>
<td>• Equivocal, borderline, or discordant stress testing where obstructive CAD remains a concern</td>
<td>A (8)</td>
</tr>
<tr>
<td>Risk Assessment With Prior Test Results and/or Known Chronic Stable CAD New or Worsening Symptoms</td>
<td>• Abnormal coronary angiography OR abnormal prior stress imaging study</td>
<td>A (9)</td>
</tr>
<tr>
<td>Risk Assessment With Prior Test Results and/or Known Chronic Stable CAD Coronary Angiography (Invasive or Noninvasive)</td>
<td>• Coronary stenosis or anatomic abnormality of uncertain significance • Evaluation of ischaemic equivalent</td>
<td>A (9)</td>
</tr>
</tbody>
</table>

A (8) and *A (9)* refer to the grading system used in the ACCF et al. JACC 2009;53:2201-29.
Appropriate use criteria

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment: Postrevascularization</td>
<td>•Evaluation of ischaemic equivalent</td>
<td>A (8)</td>
</tr>
<tr>
<td>(PCI or CABG) †Symptomatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment: Postrevascularization</td>
<td>•Incomplete revascularization</td>
<td>A (7)</td>
</tr>
<tr>
<td>(PCI or CABG) †Asymptomatic</td>
<td>•Additional revascularization feasible</td>
<td>A (7)</td>
</tr>
<tr>
<td></td>
<td>•Greater than or equal to 5 years after CABG</td>
<td></td>
</tr>
</tbody>
</table>
Appropriate use criteria

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Assessment: Within 3 Months of an ACS STEMI</td>
<td>• Hemodynamically stable, no recurrent chest pain symptoms or no signs of HF
• To evaluate for inducible ischaemia
• No prior coronary angiography</td>
<td>A (8)</td>
</tr>
<tr>
<td>Risk Assessment: Within 3 Months of an ACS UA/NSTEMI</td>
<td>• Hemodynamically stable, no recurrent chest pain symptoms or no signs of HF
• To evaluate for inducible ischaemia
• No prior coronary angiography</td>
<td>A (9)</td>
</tr>
</tbody>
</table>

ACCF etc. JACC 2009;53:2201-29
Appropriate use criteria

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
</table>
| Assessment of Viability/Ischemia Ischemic Cardiomyopathy / Assessment of Viability | • Known severe LV dysfunction
• Patient eligible for revascularization | A (9) |
Use of AUC

N=5928

- Multivariate analysis for inappropriateness:
 - Asymptomatic OR: 22.5 (95%CI:15.2–33.2)

“known” CAD:
- The second most frequent inappropriate indication was the performance of SPECT imaging ≤2 years after PCI in an asymptomatic patient (23.8%).

Hendel et al. JACC 2010;55:156-62
Use of AUC

An objective automated computer algorithm calculated appropriateness

Period 1: baseline.
Period 2: after availability of “on-demand” reports.
Period 3: after delivery of specific site and aggregate reports.

Hendel et al. JACC 2010;55:156-62
Use of AUC

An objective automated computer algorithm calculated appropriateness

The single site with substantial change in the rate of inappropriate test use:

Initiated discussions to educate physicians on compliance with the AUC.

Period 1: baseline.
Period 2: after availability of “on-demand” reports.
Period 3: after delivery of specific site and aggregate reports.

Hendel et al. JACC 2010;55:156-62
Testing asymptomatic patients at risk for SCAD

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>In low- or intermediate-risk (based on SCORE) asymptomatic adults stress imaging tests are not indicated for further CV risk assessment.</td>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>

ESC Eur Heart J 2013;34:2949-3003
ESC and AFFC guideline

<table>
<thead>
<tr>
<th>Risk</th>
<th>Ischaemia imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk (annual mortality rate >3%)</td>
<td>Area of ischaemia >10% (≥ 2/17 segments)</td>
</tr>
<tr>
<td>Intermediate risk (annual mortality rate 1-3%)</td>
<td>Area of ischaemia between 1 to 10%</td>
</tr>
<tr>
<td>Low risk (annual mortality rate <1%)</td>
<td>No ischaemia</td>
</tr>
</tbody>
</table>

Known CAD: Nuclear Cardiology

IMIC 2016

ACCF Circulation 2012;126:e354-e471

ESC Eur Heart J 2013;34:2949-3003
Risk stratification using ischaemia testing ESC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk stratification using preferably stress imaging is recommended in patients with SCAD after significant change in symptom level.</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Stress imaging is recommended for risk stratification in patients with known SCAD and a deterioration in symptoms if the site and extent of ischaemia would influence clinical decision making</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>

ESC Eur Heart J 2013;34:2949-3003
Risk stratification using ischaemia testing ACCF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either exercise or pharmacological stress with imaging is recommended for risk assessment in patients with SCAD who are being considered for revascularization of known coronary stenosis of unclear physiological significance.</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>
Re-assessment in patients with SCAD ESC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>An exercise ECG or stress imaging if appropriate is recommended in the presence of recurrent or new symptoms once instability has been ruled out.</td>
<td>I</td>
<td>C</td>
</tr>
</tbody>
</table>

ESC Eur Heart J 2013;34:2949-3003
Re-assessment in patients with SCAD ACCF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress imaging with nuclear MPI or echocardiography is recommended in patients with known SCAD who have new or worsening symptoms not consistent with unstable angina.</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>

ACCF Circulation 2012;126:e354-e471

Known CAD: Nuclear Cardiology
IMIC 2016
Management based risk assessment

Confirmed diagnosis SCAD

- Low risk
- Intermediate event risk
- High event risk

- OMT and consider CAG
- CAG (+ PCI option) + OMT

Trial of OMT

- Yes: Continue OMT
- No: Symptoms improved

Symptoms improved

- Yes: Intensify medical treatment
- No: Symptoms improved

Known CAD: Nuclear Cardiology
IMIC 2016
Revascularization of SCAD in patients OMT ESC

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>To improve prognosis</th>
<th>To improve symptoms persistent on OMT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class</td>
<td>Level</td>
</tr>
<tr>
<td>Proven large area of ischaemia (>10% LV)</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Dyspnoea/cardiac heart failure with >10% ischaemia/viability supplied by stenosis >50%</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>No limiting symptoms with OMT in vessel other than left main or proximal LAD or single remaining vessel or vessel subtending area of ischaemia <10% of myocardium or with FFR ≥0.80.</td>
<td>III</td>
<td>A</td>
</tr>
</tbody>
</table>

ESC Eur Heart J 2013;34:2949-3003
Risk stratification using ischaemia testing ACCF

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either exercise or pharmacological stress with imaging is recommended for risk assessment in patients with SCAD who are being considered for revascularization of known coronary stenosis of unclear physiological significance.</td>
<td>I</td>
<td>B</td>
</tr>
</tbody>
</table>

Of interest

A request to perform either a) more than 1 stress imaging study or b) a stress imaging study and a CCTA at the same time is not recommended for risk assessment in patients with SCAD.

III C
Revascularization of SCAD in patients OMT

Significant CAD + ischaemia (>10% myocardium) + OMT

Revascularization possible

Anatomical factors
Clinical factors
Technical factors
Local factors

CABG hybrid PCI

Revascularization not possible

Failure

Refractory angina

Stem cell therapy?
Spinal cord stimulation?
Etc.
Myocardial perfusion

- **♂ 79 year**
- **history:**
 - 1988 inferior MI
 - 2000 atypical AP, medical treatment
 - 2013 change of cardiologist
- **RF:**
 - Hypertension, DM, smoking
- **Co-morbidity: arthritis**
- **EGG:**

Known CAD: Nuclear Cardiology
IMIC 2016
Myocardial perfusion

ECG at rest

Known CAD: Nuclear Cardiology
IMIC 2016
Myocardial perfusion

ECG after Adenosine
Nuclear Cardiology

myocardial perfusion
Myocardial perfusion

Stress Rest

EF = 36%

EF = 38%

Known CAD: Nuclear Cardiology
IMIC 2016
Myocardial perfusion

RCA

LAD

Known CAD: Nuclear Cardiology
IMIC 2016
Myocardial perfusion

- 79 year
- History:
 - 1988 inferior MI
 - 2000 atypical AP, medical treatment
 - 2013 change of cardiologist
- MPS:
 - Ischemia
- CAG:
 - 2 vessel disease and successful PCI of RCA and LAD
- 3 months later recurrence of angina!
Myocardial perfusion
Myocardial perfusion

Stress

Rest

EF = 53%

Known CAD: Nuclear Cardiology
IMIC 2016
Myocardial perfusion

RCA Post-PCI

LAD Post-PCI

Known CAD: Nuclear Cardiology
IMIC 2016
Known SCAD and normal MPI

N= 266,
CAD: previous myocardial infarction and/or previous coronary revascularization
Normal MPI during stress and at rest (<2 segments)
Median follow-up of 12 years (range 8 to 21 years)

The annualized cardiac mortality rate was 0.9%

Ottenhof et al. J Nucl Cardiol 2013;20:748–54
Appropriate use criteria

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
</table>
| Risk Assessment with Prior Test Results and/or Known Chronic Stable CAD Asymptomatic Prior Coronary Calcium Agatston Score | • High CHD risk
• Agatston score between 100 and 400
• Agatston score greater than 400 | A (7) |
Conclusions

• Role of MPI in patients with known SCAD is well validated:
 – Adequate representation in guidelines

• Adherence to guidelines or appropriate use criteria is essential:
 – Adequate patient care
 – Trainable!
Myocardial perfusion

Quality is essential!
Therefore, important to realize that:

Prevent GIGO!

Garbage In, Garbage Out!
Call for abstracts & clinical cases
Deadline 21 Nov 2016
JOIN US IN VIENNA, AUSTRIA!