Metal artifact reduction in computed tomography at head and neck region

Sornjarod Oonsiri, MSc
Anchali Krisanachinda, PhD
David Sutton, PhD

Chulalongkorn University, Thailand
University of Dundee, United Kingdom
Content

• Introduction

• Material and method

• Result

• Conclusion
CT for radiation therapy

• Organ delineation

• Dose calculation
Artifact

- Artifacts are significant problem in CT
 - Streak artifact
 - Motion artifact
 - Ring artifact

Sprawls P. 1995
Popilock R et al. 2008
Artifact

- Artifacts are significant problem in CT
 - *Streak artifact*
 - Motion artifact
 - Ring artifact

Sprawls P. 1995
Popilock R et al. 2008
Metal artifact

• Source: Metal implant
 • Dental implant
 • Surgical clip
 • Coils, wires
 • Orthopedic hardware

• Metal streak artifacts occur because *filtered back projection*
OMAR

• O-MAR = Metal Artifact Reduction for Orthopedic Implants

• O-MAR is a commercial product available from Philips Healthcare which implements a robust and efficient algorithm to mitigate artifact caused by metal objects in CT images

Philips Healthcare, 2012
OMAR in radiation therapy

<table>
<thead>
<tr>
<th>Region</th>
<th>Image quality (% Noise)</th>
<th>Dosimetric evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral cavity</td>
<td>61.5</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>100%</td>
</tr>
</tbody>
</table>

Oonsiri S. et al. 2014
Research objective

• To develop the method for metal artifact reduction in oral cavity computed tomography image using MATLAB
Material and method
Material and method

• **Philips Brilliance CT**
 • Big Bore Oncology
 • OMAR

• **MATLAB**
 • New algorithm

• **Phantom**
 • CTDI head phantom
 • Alderson-Rando phantom
Fill the blank region by
- Interpolation
 - Linear interpolation
 - Non-linear interpolation
- Average value
- Weighted average value
- Substitution
Phantom test

• With and without *metallic* inserts
 • 120 kVp
 • 3 mm slice thickness
 • Vary mA over clinical range (100-250)
Result
Homogeneous phantom without metallic

FBP

OMAR

New algorithm
Homogeneous phantom with metallic

FBP

OMAR

New algorithm
Noise of homogeneous phantom (HU)

<table>
<thead>
<tr>
<th></th>
<th>Without metallic</th>
<th></th>
<th>With metallic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FBP</td>
<td>OMAR</td>
<td>New algorithm</td>
<td>FBP</td>
</tr>
<tr>
<td>100 mAs</td>
<td>10.2</td>
<td>9.7</td>
<td>10.0</td>
<td>52.6</td>
</tr>
<tr>
<td>150 mAs</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>30.9</td>
</tr>
<tr>
<td>200 mAs</td>
<td>6.3</td>
<td>6.4</td>
<td>6.4</td>
<td>17.6</td>
</tr>
<tr>
<td>250 mAs</td>
<td>6.3</td>
<td>6.5</td>
<td>6.4</td>
<td>17.6</td>
</tr>
</tbody>
</table>
Alderson-Rando phantom without metallic

FBP

OMAR

New algorithm
Alderson-Rando phantom with metallic

FBP

OMAR

New algorithm
Noise of Alderson-Rando phantom (HU)

<table>
<thead>
<tr>
<th></th>
<th>Without metallic</th>
<th>With metallic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FBP</td>
<td>OMAR</td>
</tr>
<tr>
<td>100 mAs</td>
<td>11.9</td>
<td>10.2</td>
</tr>
<tr>
<td>150 mAs</td>
<td>8.6</td>
<td>8.0</td>
</tr>
<tr>
<td>200 mAs</td>
<td>7.6</td>
<td>7.9</td>
</tr>
<tr>
<td>250 mAs</td>
<td>7.3</td>
<td>6.9</td>
</tr>
</tbody>
</table>
Discussion

• Metal artifact reduction techniques cannot eliminate metal artifacts totally but it can suppress the metal artifact and improve the image quality in the CT images

• The overall dose distribution difference in the clinical application was within 2%

Oonsiri S. et al. 2014
Conclusion

• Metal artifact reduction techniques reduce metal artifacts 20-40% in CT images of the treatment planning system
Future work

- Further analysis with phantom
- Implement to the patient CT image
- Improve performance of new algorithm
Thank you for your attention