PET/CT in Paediatric Oncology
Hybrid Imaging PET/CT & PET MRI

Robert Howman-Giles MD FRACP FAANMS DDU

The Children’s Hospital at Westmead
Department of Nuclear Medicine
Westmead, Sydney, Australia

Westmead Hospital
Department of Nuclear Medicine, PET and Ultrasound
Westmead, Sydney, Australia

Discipline of Paediatrics and Child Health
Discipline of Medical Imaging, Sydney Medical School
University of Sydney

iPET 2015 Vienna
The Children’s Hospital at Westmead

(Royal Alexandra Hospital for Children)

- Bed capacity: 340
- Inpatients 2014: 31,833
- Outpatients 2014: 734,030
- Tertiary/Quaternary hospital
- Dept Nuclear Medicine
 - 4203 studies
 - NM, PET/CT, BMD, body composition
 - Therapy: I131, MIBG
PET/CT

June 2006 – Dec 2014: >4,500 PET/CT studies
80% Oncology, 15% neurology / neuro-oncology, 5% Infection / PUO

Oncology Whole Body PET/CT Scans

- Lymphoma 39%
- Primary Bone Tumours 18%
- Soft Tissue Sarcomas 10%
- Wilms 1%
- Neuroblastoma 1%
- Other 31%

Other – adrenocorticocarcinoma, NPC, Germ Cell tumours, neuroendocrine tumours, melanoma, thyroid carcinoma, hepatoblastoma, HCC, LCH, NF1, PTLD etc.

Siemens PET mCT 128
Hybrid Imaging in Paediatric Oncology

PET/CT & PET/MR or PET/CT & MR?

- Lymphoma
- Sarcoma – bone, soft tissue
- Neurofibromatosis type 1
- Neuroendocrine
PET/CT Oncology 2015

• Common Paediatric Malignancy
• PET/CT – ‘Standard of Diagnostic Care’
 – Stage
 – Response to Treatment
 – Detection residual & recurrent cancer
 – End of treatment stage
 – Surveillance
PET/CT Oncology 2015

Definite role in management

- **Lymphoma**
 - Hodgkins lymphoma
 - Non-Hodgkins lymphoma

- **Sarcoma**
 - Primary bone
 - Soft tissue
 - Rhabdomyosarcoma 55%
 - Non rhabdomyosarcoma 45%
Less well defined role

• Other & rare solid tumours
 – Malignant brain tumours
 – Neuroblastoma
 – Hepatoblastoma, hepatocellular carcinoma
 – Langerhan Cell Histiocytosis
 – Germ Cell Tumours
 – Malignant peripheral nerve sheath tumours
 – Neuroendocrine
 – Epithelial Neoplasms & Melanoma
 • Adrenocortical
 • Nasopharyngeal
PET, CT & MRI

• Technologies are rapidly changing and improving
 – MRI: DWI, fMRI and MRSI: anatomy, pathology, bio-physiology and chemistry
 – PET/CT: faster, less radiation, more specific radiopharmaceuticals- biomarkers, metabolism, theranostics
 – PET/MRI or PET/CT & MRI?
Advances in multimodal neuroimaging: Hybrid MR–PET and MR–PET–EEG at 3 T and 9.4T

Strengths of modalities
Diagnostic value of combined 18F-FDG PET & MRI for staging and restaging in paediatric oncology
Pfluger et al Ludwig Maximilians University of Munich

Table 3 Imaging findings of examination-based analysis in primary diagnosis (n=76) and follow-up (n=194)

<table>
<thead>
<tr>
<th>Findings</th>
<th>18F-FDG PET</th>
<th>MRI</th>
<th>18F-FDG PET/MRI image combination</th>
<th>18F-FDG PET/MRI image registration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PD</td>
<td>F/U</td>
<td>PD</td>
<td>F/U</td>
</tr>
<tr>
<td>True-positive</td>
<td>63</td>
<td>69</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>True-negative</td>
<td>1</td>
<td>96</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>False-positive</td>
<td>11</td>
<td>22</td>
<td>9</td>
<td>83</td>
</tr>
<tr>
<td>False-negative</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>98</td>
<td>91</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>-</td>
<td>81</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Pos. likelihood ratio</td>
<td>-</td>
<td>4.8</td>
<td>-</td>
<td>1.3</td>
</tr>
</tbody>
</table>
MRI issues

• Primary Dx: Identifying viable bone/bone marrow tumour lesions due to limited size and/or soft tissue changes e.g. oedema

• False-positive findings - nonspecific inflammatory lymph node enlargement or infectious tissue changes

• Follow-up: MRI low specificity— misinterpretation of post-therapeutic changes.
 o bone marrow appearance in children varies with age, bone marrow oedema, necrotic tissue, contrast enhancement in successfully treated lesions,
 o difficulties in distinguishing between active tumour tissue and residual mass (necrosis or fibrosis on morphological imaging).
 o lymph node enlargement without active tumour was regularly seen on a post-therapeutic MRI scan.
PET- Gold standard for Molecular Imaging

- F^{18}
 - Glucose-FDG
 - Amino acids-FET, DOPA
 - Cell hypoxia-F-MISO
 - Cell proliferation-FLT
 - Choline-CHT

- Ga^{68}
 - SSTR- Dotatate

- C^{11}
- Cu^{64}

Lopci et al. EJNMMI 2015
DOI 10.1007/s00259-014-2971-8
Lymphoma & FDG PET/CT
Children and Adolescents

• Standard of Diagnostic Care
• Valuable technique high sensitivity & specificity
• Essential for staging & impacts on management

<table>
<thead>
<tr>
<th></th>
<th>FDG PET/CT</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>95.9%</td>
<td>70.1%</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.7%</td>
<td>96.9%</td>
</tr>
</tbody>
</table>

• PET/CT correct modality in 86% discordant lesions
• PET/CT better specificity for predicting poor response

London et al. 18F-FDG PET/CT in pediatric lymphoma: comparison with conventional imaging EJNMMI 2011;38:274-284
13 yr F: Presented with painful R tibia? Primary bone malignancy Biopsied?
Bx:Hodgkins Disease
Stage IVB
Stage IVB
Rx BEACOPP
Response

Table 2 Deauville criteria for interim PET interpretation [68]

<table>
<thead>
<tr>
<th>Scale level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No uptake</td>
</tr>
<tr>
<td>2</td>
<td>Uptake ≤ mediastinum</td>
</tr>
<tr>
<td>3</td>
<td>Uptake > mediastinum ≤ liver</td>
</tr>
<tr>
<td>4</td>
<td>Uptake moderately > liver</td>
</tr>
<tr>
<td>5</td>
<td>Uptake significantly > liver and new disease foci</td>
</tr>
</tbody>
</table>

J Clin Oncol 32:3048-59 2014 Barrington et al
Completion of therapy March 2010 Complete response
Note: abnormal bone on CT but not metabolic.
Remains in remission May 2014
Lymphoma-CI & MRI

• WBMR-high sensitivity 96%
• WBMR with DWI- helps in nodal disease and extranodal involvement
 – Gu et al AJR 2011;197:W384-W391
 – Krohmer S et al Eur J Radiol 2010;256-261
 – Good correlation PET/CT and WBMR (STIR & RARE imaging)
Paediatric HD
Surveillance & Relapse

Texas Childrens Hospital, Baylor College of Medicine, Texas

• 2-17 mths post Tx
• 11 (85%) within 12 mths (mean 5 mths)
• 2 pts at 16 and 17 mths post Tx

The Children’ Hospital at Westmead, Sydney

• June 2006-June 2013
• Patients: 64
• PET/CT scans 535---- av 8.4
• Relapse: 7.8% 5/64 <12 mths
NHL

- Highly proliferative malignant cells 85-99%
- Cure rates depends on pathological subtype and tumour stage 70-90%

Histopathology

1. Burkitt or B cell Acute Lymphoblastic leukemia 40-50%
2. Lymphoblastic lymphoma (80% T cell 20% B cell) 20-25%
3. Anaplastic Large Cell Lymphoma (T cell or null cell) 10-15%
4. Diffuse Large B Cell Lymphoma 10%
5. Primary Mediastinal B cell lymphoma rare
6. Follicular Lymphoma rare
Major Histopath Categories of Non-Hodgkin’s Lymphoma in Children and Adolescents

<table>
<thead>
<tr>
<th>Category WHO Classification/ Updated REAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoblastic lymphoma, Precursor T/leukemia</td>
</tr>
<tr>
<td>Burkitt’s and Burkitt’s like lymphomas</td>
</tr>
<tr>
<td>Diffuse large B-cell lymphoma</td>
</tr>
<tr>
<td>Anaplastic large cell lymphoma, systemic</td>
</tr>
<tr>
<td>Anaplastic large cell lymphoma, cutaneous</td>
</tr>
</tbody>
</table>

All Types Positive 18F-FDG Considered high grade NHL
Stage & Response assessment

7 yr F Anaplastic Large Cell NHL

STAGE III

Very Good Response after 2 cycles chemotherapy
Minimal activity in right axilla
Increased bone marrow activity
- Chemotherapy
- G-CSF
International Pediatric Non-Hodgkin Lymphoma Response Criteria

John T. Sandlund, R. Paul Guillerman, Sherrie L. Perkins, C. Ross Pinkerton, Angelo Rosolen, †Catherine Patte, Alfred Reiter, and Mitchell S. Cairo

Table 1. International Pediatric NHL Response Criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Disappearance of all disease (three designations)</td>
</tr>
</tbody>
</table>
| **CR** | CT or MRI reveals no residual disease or new lesions
Resected residual mass that is pathologically (morphologically) negative for disease (detection of disease with more sensitive techniques described as supporting data [Table 2])
BM and CSF morphologically free of disease (detection of disease with more sensitive techniques described as supporting data [Table 2]), with no new lesions by imaging examination |
| **CRb** | Residual mass has no morphologic evidence of disease from limited or core biopsy (detection of disease with more sensitive techniques described as supporting data [Table 2]), with no new lesions by imaging examination
BM and CSF morphologically free of disease (detection of disease with more sensitive techniques described as supporting data [Table 2])
No new and/or progressive disease elsewhere |
| **CRu** | Residual mass is negative by FDG-PET, no new lesions by imaging examination
BM and CSF morphologically free of disease (detection of disease with more sensitive techniques described as supporting data [Table 2])
No new and/or progressive disease elsewhere |
| **PR** | 50% decrease in SPD on CT or MRI; FDG-PET may be positive (Deauville score 4 or 5 with reduced lesional uptake compared with baseline); no new and/or PD; morphologic evidence of disease may be present in BM or CSF if present at diagnosis (detection of disease with more sensitive techniques described as supporting data [Table 2]); however, there should be 50% reduction in percentage of lymphoma cells |
| **MR** | Decrease in SPD > 25% but < 50% on CT or MRI; no new and/or PD; morphologic evidence of disease may be present in BM or CSF if present at diagnosis (detection of disease with more sensitive techniques described as supporting data [Table 2]); however, there should be 25% to 50% reduction in percentage of lymphoma cells |
| **NR** | For those who do not meet CR, PR, MR, or PD criteria |
| **PD** | For those with > 25% increase in SPD on CT or MRI (Deauville score 4 or 5 on FDG-PET with increase in lesional uptake from baseline, or development of new morphologic evidence of disease in BM or CSF) |

Abbreviations: BM, bone marrow; CR, complete response; CRb, complete response biopsy negative; CRu, complete response unconfirmed; CT, computed tomography; FDG, $^{[18]}$fluordeoxyglucose; MR, minor response; MRI, magnetic resonance imaging; NHL, non-Hodgkin lymphoma; NR, no response; PD, progressive disease; PET, positron emission tomography; PR, partial response; SPD, sum of product of greatest perpendicular diameters.
Sarcomas: Bone and Soft Tissue

- MRI preferred modality for
 - Stage and extent of primary tumour
 - directs protocols, surgery, radiotherapy
 - Response primary +/- other sites
 - residual mass ? viable
 - Post induction pre surgery
 - Surveillance

- Chest CT- pulmonary metastases

- PET/CT
 - Staging- extent of distant disease
 - Response
 - End of treatment
 - Surveillance
15yr male pain left leg
Bx Osteogenic sarcoma

Staging: Pulmonary, bone and bone marrow metastases

$\text{SUV}_{\text{max}} = 7.4$
A. 12 yr M pain in Left femur. Abn X-ray Bx:High grade osteogenic sarcoma

B. 11yr M Pain proximal R tibia Bx:Osteoblastic osteogenic sarcoma

*Growth plate Involvement?
Response 2 cycles chemotherapy
Response to Chemotherapy

A

Poor responder
$SUV_{\text{max}} \ 10.6 \rightarrow 6.1 \ (42\%)$

Surgery: 25% viable cells
Mx changes: more aggressive chemotherapy

B

Very good response
$SUV_{\text{max}} \ 17.8 \rightarrow 2.1 \ (88\%)$

Surgical Resection:
Histopath: no viable cells
Response

- MRI
 - Residual mass? Viable malignant tissue
 - DWI or contrast enhancement may useful for tumour necrosis
 - Uhl et al Invest Radiol 2006;41:618-623
 - Bone marrow
 - Age differences, hyperactive stimulated marrow
 - G-CSF
 - Oedema and tumour infiltration
• Relative reduction in SUVmax rather than the absolute value SUVmax following chemotherapy may be a stronger predictor of tumor response.

<table>
<thead>
<tr>
<th>PET/CT</th>
<th>CI (inc regional MR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>98%</td>
</tr>
<tr>
<td>Specificity</td>
<td>97%</td>
</tr>
</tbody>
</table>
Soft Tissue Sarcomas

- Histopathologically classified according to tissue they resemble.

Rhabdomyosarcoma 55%
Other 45%
Diagnosis & Staging

- MRI: preferred modality at diagnosis, extent of local involvement
- CT- pulmonary metastases
- Multicentre trial- Pediatric Sarcoma
 - Volker et al J Clin Oncol 2007;25:5435-5441 (Berlin Dusseldorf)
 - Marked added value of FDG PET/CT over CI
 - Lymph node involvement (RMS sens PET 93% c/w CI 36%)
 - Bone metastases
 - OS Sensitivity PET/CT 90% v CI + Bone Scan 90%
 - ES Sensitivity PET/CT 88% v CI+ Bone Scan 37%
Response Soft Tissue Sarcoma

• PET/CT
 – More accurate than sized base criteria for histopathological response
 – Modality of choice
 • Evilevitch et al Clin Cancer Res 2008;14:715-720

• MR + DWI tumour cellularity
 – ? Useful for response assessment
 • Schnapauff et al J Magn Reson Imag 2009;29:1355-1359
6 yr M IDDM Rx insulin
Pain in L leg.
Mass L lower medial leg above knee

MRI: solid+necrotic mass R vastus medialis

Bx. Alveolar Rhabdomyosarcoma
PET CT: Metabolic lesion with central necrosis (SUVmax 3.5)
No regional LNs or distant metastases

FDG coreg MRI- RTx planning
Post 2 cycles of chemotherapy

MR COR STIR
Mild reduction in size

PET MR COREG
SUVmax 2.3 (34%)

Partial response
9 mths post Tx developed pain lower right back
MRI metastatic disease
12 yr F presented with a mass on the right back July 2007
CT and MRI revealed a soft tissue mass with bone destruction and
extension into the spinal canal

Bx: High grade sarcoma Peripheral Nerve Sheath origin
PET/ CT localised tumour
Rx surgery, chemotherapy (ARST0332), radiotherapy

SUVmax 5.3

Co-Registered MR and FDG PET Axial
Follow up PET/CT

Follow up - orthopaedic hardware artifacts
Neurofibromatosis Type 1
8 yr F Multiple Plexiform Neurofibromas 2007

R paravertebral- Mn Peripheral Nerve Sheath Tumour

SUVmax 4.6
SUVmax 2.4

R lower leg Benign PN

SUVmax 4.6
Follow up MRI 2013: enlarging tumours
18F-FDG increased metabolic activity:
Mass soft tissue deep to left 5th intercostal space

SUVmax
Grade 1 < 3
Grade 2 >3-<4
Grade 3 >4

EJNMMI (2010) 37:1309
Moharir et al

SUVmax 6.2 to 6.8 delay
Histopath: MPNST WHO GrIV
15yr M
NF1
Multiple plexiform Neurofibromas
Rx Imatinib
WBMR STIR
Proximal R tibial lesion
Larger than previous
FDG PET
Other Paediatric Malignancy

- Neuroblastoma
- **Neuroendocrine tumours**
- Neurofibromatosis (NF1)
- Langerhan Cell Histiocytosis
- Hepatoblastoma, Hepatocellular carcinoma
- Adrenocortical carcinoma
- Nasopharyngeal carcinoma
- Germ cell tumours
- Yolk sac tumours
- Wilms’ tumour*
- Retinoblastoma
- Melanoma
- Thyroid carcinoma
Neuroendocrine Tumours

- Previous somatostatin agent 111In-octreotide
- Replaced by PET agent 68Ga DOTATATE or DOTATOC
Management

<table>
<thead>
<tr>
<th></th>
<th>Well-differentiated</th>
<th>Poorly differentiliated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade (ENETS)</td>
<td>Low (G1)</td>
<td>Intermediate (G2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High (G3)</td>
</tr>
<tr>
<td>Ki-67 index (%)</td>
<td>≤2</td>
<td>3-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>20</td>
</tr>
<tr>
<td>Anatomic imaging</td>
<td></td>
<td>more rapid growth on serial imaging</td>
</tr>
<tr>
<td>Functional imaging</td>
<td></td>
<td>FDG PET +ve</td>
</tr>
<tr>
<td></td>
<td>Octreoscan SPECT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or SSTR PET +ve</td>
<td></td>
</tr>
<tr>
<td>Prognosis</td>
<td>Indolent (slowly growing)</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Treatment options</td>
<td>Surgery for localised +/- resectable metastatic disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observation</td>
<td>Chemotherapy</td>
</tr>
<tr>
<td></td>
<td>Somatostatin analogues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radionuclide therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Everolimus, sunitnib, α-interferon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver metastases: radiofrequency ablation, hepatic embolisation, TACE, SIR-Spheres</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Classification of neuroendocrine tumor with corresponding imaging features and treatment options. From Hofman et al., 2011. SPECT, single photon emission tomography; PET, positron emission tomography; SSTR, somatostatin receptor; TACE, transarterial chemoembolization.
ES 9 yr F
2007
Hypertension, intermittent headaches, abdominal pain, hot and sweaty episodes

Elevated catecholamines

CT.: 4cm vascular lobulated mass R para-aortic area

123I- MIBG Study +ve

Paraganglioma with lymphatic invasion

Succinate Dehydrogenase B (SDH B) mutation
Represented 13 yrs June 2011 Recent increasing headaches, mass R paravertebral region near renal hilum on MRI.
Ga68 DOTATATE
2x2cm Lesion in hilum of R kidney: high uptake of Ga68
Incidental lesion in 6th R rib

R recurrence
Co-Reg Ga68 & MR T2
PET CT L rib
Surgery
1. R paravertebral mass---- Paraganglioma
2. L 6th Rib--- no abnormal pathology
Routine F/U
30 Aug 2012
68Ga DOTATATE

Multiple bone lesions

- 6th L rib
- R pedicle T8
- L1 vertebral body
- L iliac bone
Referred for
Peptide Receptor Radionuclide therapy (PRRT)
177Lu DOTATATE (Lutate)

St George Hospital Sydney

Uptake moderate

Completed course
Repeat Ga68 Dotatate- stable disease
16-yr F R adrenal Phaeochromocytoma (MIBG neg)
Surgically removed 2010
Now presents 2012 biopsy proven metastases in the liver.
Nuclear medicine evaluation for biological markers for staging and therapy

123I-MIBG

68Ga DOTATATE

NEGATIVE
Metastases

- Liver multiple
- R paravert near kidney
- Mid anterior vert L4
Loss of SSR expression indicates poorly differentiated NET

- adverse prognosis
- higher responsiveness to chemotherapy: e.g. carboplatin and etoposide

Other treatments

- Tyrosine kinase antagonists
 - Sunitinib
- Chemotherapy
 - Platinum and etoposide
 - 5-Fluouracil (5-FU)
 - Neo-vascularisation antagonists
 - Avastin
- Radiotherapy bone and soft tissue
- Metastases localised to liver
 - Surgery
 - Inoperable
 - Y-90 microspheres(SIRT)
Conclusion
PET/CT Paediatric Oncology 2015

• PET/CT – ‘Standard of Diagnostic Care’
 – Stage
 – Response to Treatment
 – Detection residual & recurrent cancer
 – End of treatment stage
 – Surveillance

• Is complementary to MRI and other conventional imaging
Conclusion

- PET/CT has become standard of diagnostic care in the common paediatric solid tumours.
- There is a significant but less well defined role in many of the uncommon and rare solid tumours.
- The uptake of FDG relates to the degree of malignancy and cellular differentiation of these cancers.