Plenary Session IV: Hybrid Imaging and Other Imaging Techniques in Pediatrics:

Other Imaging Modalities in Pediatric Cancer

HELEN R. NADEL MD FRCPC (Diag Rad, Nuc Med)
ABNM ABR (CAQ Ped Rad)
PEDIATRIC RADIOLOGIST AND NUCLEAR MEDICINE PHYSICIAN
HEAD, DIVISION OF NUCLEAR MEDICINE B.C. CHILDREN’S HOSPITAL
ASSOCIATE PROFESSOR OF RADIOLOGY UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, BC CANADA

IPET 2015 October 6, 2015
Vienna, Austria
Modalities for Imaging Children with Cancer

- Ultrasound
- Radiography
- MRI
- SPECT/CT
- PET/CT
- PET/MRI

DOSE

INCREASING

COMPLEXITY
Objectives

At the end of this presentation you will be able to identify:

- correlative imaging modalities used for diagnosis and management of children with cancer
- Use of SPECT/CT in pediatric oncology
- Use of PET Probe in pediatric oncology
- Novel use of F-DOPA
- PET/MRI
Child with previously resected Wilms' tumor for routine follow-up surveillance ultrasound examination
Recurrent Metastatic Wilms'
2 year old with enlarging abdomen

US with doppler

POST Gad COR T1 MRI
FDG PET CT in nephroblastomatosis with focal Wilms’ tumor
PET/CT at BCCH

- No separate attenuation correction scan
- PET CT as initial cross-sectional imaging study for child presenting with presumed lymphoma, sarcoma, solid organ non-renal tumor
- Contrast enhanced CT used for attenuation correction for PET
- Vertex to toe true whole body imaging
- “One Stop Shop”
7 year old male presented with left facial mass after incidental trauma 3-4 months ago

Presumed diagnosis = rhabdomyosarcoma

Ultrasound-solid mass

MRI left maxillary mass with bone and soft tissue involvement and adjacent lymph nodes

To PET/CT
Dx=Neuroblastoma

- This patient has both a left maxillary mass but also note the right adrenal calcified mass and multiple bony lesions
Dx=Neuroblastoma

- This patient has both a left maxillary mass but also note the right adrenal calcified mass and multiple bony lesions.
Neuroblastoma Epidemiology

- ~8 children per million per year under 15 years
- Most common extracranial solid tumor of childhood
- More than 95% of cases diagnosed <10 years
- 3rd leading cause of childhood cancer mortality
EFS by Neuroblastoma Risk Group

EFS Rate (%)

Years Since Enrollment

n=2621; p<0.0001
Pediatric I-123 mIUG SPECT/CT Indications

- Staging / restaging / metastatic workup
- Response assessment
- Biopsy site planning
- End of therapy baseline
- Confirmation of discrepant findings on other studies
SPECT/CT and I-123 mIBG Scintigraphy

- Pediatric cooperative group protocols require mIBG scintigraphy for staging and response assessment and Curie score

- Most children with neuroblastoma will have CT evaluation and some depending on site of tumor (ie spinal involvement) will get additional MR

- Since 2007 with arrival of SPECT/CT gamma camera it was decided where possible to perform single optimized post contrast enhanced CT scan with I-123 mIBG SPECT for staging, restaging, response assessment in children with neuroblastoma

- “One stop shop”
<table>
<thead>
<tr>
<th>Methods: SPECT Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injected dose</td>
</tr>
<tr>
<td>SPECT acquisition</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SPECT reconstruction</td>
</tr>
<tr>
<td>Resolution recovery program for SPECT</td>
</tr>
</tbody>
</table>

Methods: CT Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT slices</td>
<td>6 with high resolution package</td>
</tr>
<tr>
<td>Scout acquisition</td>
<td>80 kVp</td>
</tr>
<tr>
<td>CT scan acquisition</td>
<td>per pediatric CT protocol; kVp range usually 80-110 kVp</td>
</tr>
<tr>
<td>CT dose Modulation</td>
<td>applied</td>
</tr>
<tr>
<td>Contrast administration</td>
<td>contrast dose 2ml/kg up to maximum of 100 ml non-ionic contrast</td>
</tr>
<tr>
<td>Phase of opacification</td>
<td>Portal venous; inject over 45 seconds scan at 65-70 seconds</td>
</tr>
<tr>
<td>Acquisition slice thickness</td>
<td>2.5mm slice thickness overlapping cuts; pitch 0.6</td>
</tr>
<tr>
<td>Attenuation correction</td>
<td>CT utilized</td>
</tr>
<tr>
<td>Scan reconstruction</td>
<td>soft tissue, bone, and lung reconstructions in 3mm slice thickness for axial scans; coronal and sagittal reconstruction</td>
</tr>
</tbody>
</table>
Sedation

- No routine sedation but individualized by patient at time of booking

- All sedation performed by anesthesiologist to include conscious sedation and general anesthesia with monitoring during scan and recovery

- Sedation for imaging at 24 hours to include planar and SPECT-CT
Results

- Optimized IV contrast enhanced SPECT/CT utilized for staging evaluation only with no additional imaging in 40% children
Results—"value-added" lesions

- Progressive disease
- Psoas muscle disease
- Retroperitoneal disease
- Solitary metastatic bone disease
- Thoracic nodal disease
- Intraspinal extent
Stand alone CT at diagnosis

CTDI vol = 5.3
DLP = 211.9

Follow-up CT from SPECT/CT

CTDI vol = 3.6
DLP = 102

Optimized SPECT/CT = lower dose
4 year old this SPECT/CT study was the only staging evaluation with scan findings compatible with Stage 4 neuroblastoma
Solitary bone metastasis
Multiple bone mets and intraspinal extent in this patient with progressive disease
off treatment follow-up study for neuroblastoma; thyroid ultrasound showed a neck mass

additional metastasis to the right psoas

metastasis to the left neck
• Infant with opsoclonus- myoclonus for screening for neuroblastoma
MR/SPECT mIBG FUSION

Biopsy proven neuroblastoma stage 1
3 day old with antenatal mass RUQ
ANT POST
AT DIAGNOSIS
13 day old with mass

24 HOUR I-123 mIBG

ANT

POST

6 WEEKS POST SURGERY
I-123 mIBG SPECT/CT at 6 weeks
MR at diagnosis
Conclusions

• Optimized post IV contrast enhanced diagnostic CT performed as co-registered SPECT-CT with I-123 mIBG provides 30% additional information

• This allows for improved diagnostic accuracy for staging, response assessment, and re-staging in children with neuroblastoma

• A single co-registered optimized diagnostic study reduces radiation exposure and number of individual studies performed on these children
I-123 mIBG SPECT/CT at BCCH

- SPECT/CT for staging at diagnosis or relapse regardless of other cross-sectional imaging

- Image fusion to MR even if SPECT/CT performed
IMAGE FUSION
OBJECTIVES

1. CO-LOCALIZATION
2. ADDED DIAGNOSTIC BENEFIT
3. DECREASE IN EXAMINATION TIME
16 year old female with previously resected papillary thyroid ca and post surgical I-131 therapy done elsewhere. Now presents for evaluation of possible neck node seen on ultrasound. post recombinant TSH stimulated wholebody I-123 scan. Thyroglobulin is normal.
□ Two small lymph nodes resected with help of gamma probe
□ No tumor found
15 year old with hypertension and flushing
Presents with recurrent symptoms 6 years later
18F-DOPA PET/CT again identifies multiple lesions
- Two newborns with hyperinsulinemic hypoglycemia of infancy - 18-F-DOPA scan
Whole Body MRI in Pediatric Oncology

- Lack of ionizing radiation
- MRI used for evaluating many pediatric solid tumors
- Screening technique for cancer genetic predisposition

Total Body MRI-DWIBS

diffusion weighted whole body imaging with background body signal suppression

Y. Sakura et al
http://dx.doi.org/10.1594/ecr2012/C-082
PET/MRI in Pediatrics

CHALLENGES

- Length of time for examination and sedation
- Still need CT lungs for sarcoma
- May still need low dose CT for proper attenuation correction for bone vs soft tissue

OPPORTUNITIES

- Decrease in radiation dose
- Optimized protocol may achieve dose as low as 1 mSv
- Reduce injected PET radiotracer and image as long as MRI study
- Value in sarcoma /soft tissue tumors and CNS tumors where MRI is already routine

- “all discussants agreed that they would gladly shift all of their paediatric PET/CT studies to PET/MRI if they were able to.”

Total Body PET/MRI in 14 year old with NHL

A-D Dixon Sequence MRI
E-μmap F-PET G-STIR H-DWI I-J STIR K-T2 SE

Published in: Jürgen F. Schäfer; Sergios Gatidis; Holger Schmidt; Brigitte Gückel; Ilja Bezrukov; Christina A. Pfannenberg; Matthias Reimold; Martin Ebinger; Jörg Fuchs; Claus D. Claussen; Nina F. Schwenzer; Radiology 2014, 273, 220-231. 2014 by the Radiological Society of North America, Inc. Radiology, http://pubs.rsna.org/doi/abs/10.1148/radiol.14131732
Modalities for Imaging Children with Cancer

- Ultrasound
- Radiography
- MRI
- PET/MRI
- SPECT/CT
- PET/CT

INCREASE

DOSE COMPLEXITY UTILIZATION
ACKNOWLEDGMENTS:

British Columbia Children's Hospital Nuclear Medicine and CT Technologists
British Columbia Cancer Agency PET/CT Technologists
British Columbia Children's Hospital Division of Oncology