CT Protocols and CT Dose Contribution in PET/CT

Charlot Vandevoorde
Ghent University
Department of Medical Physics and Radiation Protection

iPET 2011 – Parallel Session IIIc
Panel Discussion: Practical Aspects of CT
Introduction

Clinical Implementation of PET/CT

• Nuclear medicine imaging has changed dramatically at the end of the 90's with the introduction of multimodality imaging.

• Several advantages of adding CT-scanning to PET:
 ■ Combine functional and morphological information
 ■ Improvement of attenuation correction and anatomical localization
 ■ Enhancement of diagnostic information
 ■ Better patient throughput
 ■ Possibility for metabolic guided biopsy/resection
 ■ ...

CT protocols and CT dose contribution in PET/CT
C. Vandevoorde
Introduction

Increasing use of PET/CT

• Almost all PET equipments purchased today are PET/CT devices

<table>
<thead>
<tr>
<th>Cases reviewed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of interpreting physicians</td>
<td>162</td>
</tr>
<tr>
<td>Integrated PET/CT (n = 178)</td>
<td></td>
</tr>
<tr>
<td>PET/CT</td>
<td>149</td>
</tr>
<tr>
<td>PET</td>
<td>29</td>
</tr>
</tbody>
</table>

Coleman et al. (JNM 2010)

• Although the use of CT in NM imaging is increasing diagnostic accuracy, it also increases patient radiation doses significantly:
 - Huang et al. (Radiology 2009) – CT may contribute up to 76% of the total effective dose of a PET/CT examination
Introduction

ALARA principle

- As low as Reasonably Achievable (ALARA)
 - **Justification**
 - The radiation exposure must be medically indicated
 - No alternative approach without radiation exposure available
 - Check the availability of previous diagnostic CT scans
 - **Optimization**
 - The required image quality is not always the “best” image quality
 - How much CT is needed for the specific PET/CT examination
 - Take into account new developments in PET and CT instrumentation to reduce the radiation exposure
PET/CT protocols

Different strategies for CT use

- Attenuation correction (AC)
- Anatomical localization (AL)
- Diagnostic CT (D)
 - Non-enhanced
 - Contrast-enhanced
 - Single phase
 - Multiple phase

Cuocolo and Breatnach (EJ NMMI 2010)
PET/CT protocols

Is the CT contribution high?

• Radiation exposure in PET/CT arises from both internal (PET) and external (CT) sources

![Diagram showing PET/CT exposure]

Brix et al. (JNM 2005)

• As the radiation dose in PET/CT is mostly dependent on the CT protocols, a literature search on currently used CT protocols and CT dose levels in multimodality imaging was performed as part of the Peddose.net project.
Is the CT contribution high?

- Results from the literature review: data on adults

<table>
<thead>
<tr>
<th>Study</th>
<th>kVp</th>
<th>mAs</th>
<th>Compound</th>
<th>E(PET) mSv</th>
<th>E(CT) mSv</th>
<th>E(PET/CT) mSv</th>
<th>%CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang et al. (Radiology 2009)</td>
<td>120</td>
<td>50-175</td>
<td>¹⁸F-FDG</td>
<td>6.2</td>
<td>7.2-26.0</td>
<td>13.4-34.2</td>
<td>54-76</td>
</tr>
<tr>
<td>Brix et al. (JMN 2005)</td>
<td>120-140</td>
<td>150-200</td>
<td>¹⁸F-FDG</td>
<td>5.7-7.0</td>
<td>16.7-19.4</td>
<td>22.4-26.4</td>
<td>74</td>
</tr>
<tr>
<td>Wu et al. (EJNMMI 2004)</td>
<td>140</td>
<td>64</td>
<td>¹⁸F-FDG</td>
<td>10.7</td>
<td>19.0</td>
<td>29.7</td>
<td>64</td>
</tr>
<tr>
<td>Jadvar et al. (Sem NM 2007)</td>
<td>80-140</td>
<td>130</td>
<td>¹⁸F-FDG</td>
<td>7.4</td>
<td>1.5-9.0</td>
<td>8.9-16.4</td>
<td>17-55</td>
</tr>
<tr>
<td>Gould et al. (JNM 2008)</td>
<td>120</td>
<td>50-100</td>
<td>⁸²Rb</td>
<td>4.4</td>
<td>3.0-5.4</td>
<td>7.4-9.8</td>
<td>41-55</td>
</tr>
</tbody>
</table>
The review reveals a large range in CT contribution: 17-76%.
The values for low dose CT are on average below 10 mSv. This is sufficiently high compared to the radiation dose from conventional rotating rod source such as 68Ge, which is usually lower than 0.3 mSv.

The dose depends largely on the used CT protocol:
- Make sure that available CT dose reduction techniques are used:
 - Automatic Tube Current Modulation
 - Iterative Reconstruction
 - Adaptive Collimation
- The required image quality ≠ most beautiful image
PET/ CT protocols

Is the CT contribution high?

- Results from the literature review: data on children

<table>
<thead>
<tr>
<th></th>
<th>kVp</th>
<th>mAs</th>
<th>Compound</th>
<th>E(PET) mSv</th>
<th>E(CT) mSv</th>
<th>E(PET/CT) mSv</th>
<th>%CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chawla et al.</td>
<td>110-130</td>
<td>34,4-170</td>
<td>^18^F-FDG</td>
<td>4.6</td>
<td>20.3</td>
<td>24.9</td>
<td>82</td>
</tr>
<tr>
<td>(Pediatr Radiol 2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahey et al.</td>
<td>120</td>
<td>100</td>
<td>^18^F-FDG</td>
<td>8.4</td>
<td>9.9</td>
<td>18.3</td>
<td>54</td>
</tr>
<tr>
<td>(JNM 2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jadvar et al.</td>
<td>80-140</td>
<td>130</td>
<td>^18^F-FDG</td>
<td>6.4</td>
<td>3.8-18.9</td>
<td>10.2-25.3</td>
<td>37-75</td>
</tr>
<tr>
<td>(Sem NM 2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelfand et al.</td>
<td>120</td>
<td>-</td>
<td>^18^F-FDG</td>
<td>6.8</td>
<td>~13</td>
<td>~19.8</td>
<td>~66</td>
</tr>
<tr>
<td>(Sem NM 2007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alessio et al.</td>
<td>120</td>
<td>10-40</td>
<td>^18^F-FDG</td>
<td>5.0-7.6</td>
<td>3.1-5.9</td>
<td>8.1-13.5</td>
<td>38-44</td>
</tr>
</tbody>
</table>
PET/CT protocols

Is the CT contribution high?

• Concerns for the pediatric age group

 ■ This literature review revealed no significant differences in effective CT doses compared with the adult data. There is again a large range in CT contribution: 37-82%.

 ■ The axial field of view in PET/CT is much larger than that of a traditional abdominal CT and routinely extends from the base of the skull to the thigh. So the effective dose may be two or four times higher.

 ■ The use of serial PET/CT scans for follow-up in children, can contribute to a high cumulative effective dose.
PET/CT protocols

Is the CT contribution high?

- The cumulative radiation dose from serial PET/CT scans in children with malignancies: a 5-year retrospective review

Chawla et al. (Pediatr Radiol 2010)
Dedicated protocols for children

FDG Activity

- Activity calculation: e.g. EANM dosage card
- A trade-off should be made between:
 - Scan time reduction
 - Image quality improvement
 - Radiation dose reduction
Dedicated protocols for children

CT protocol

- Pediatric PET/CT acquisition protocols with CT for attenuation correction and localization with a weight-based tube current ranging from 10 to 40 mAs.
- The radiation dose corresponding to the proposed protocol is only 20-50% of the dose associated with protocols that use a fixed CT technique of 120 mAs and 120 kVp.

Alessio et al. (JNM 2007)
Summary

• CT contribution in multimodality imaging may be high
• Taken into account the higher sensitivity of pediatric patients, an adjustment of the scanning parameters to the smaller size of these patients is necessary.
• Appropriate justification and optimization is needed for setting up a CT scanning protocol for multimodality imaging, taking into account:
 ■ The age of the patient
 ■ CT dose reduction techniques
 ■ Required image quality (≠ “best” image quality)
 ■ Availability of previous diagnostic CT scans