SIRT in Neuroendocrine Tumors

Marnix G.E.H. Lam, MD PhD
Professor of Nuclear Medicine
AVL Amsterdam – UMC Utrecht
ENETS Center of Excellence, The Netherlands
Disclosure of speaker’s interests

Consultant for BTG, Terumo and Sirtex
Advisor for Bayer Healthcare

The department of Radiology and Nuclear Medicine of the UMC Utrecht receives royalties and research support from Quirem Medical
Radioembolization
<table>
<thead>
<tr>
<th>Microsphere specifications</th>
<th>TheraSphere®</th>
<th>SIR-Spheres®</th>
<th>Quiremspheres®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclide (T½ in hours)</td>
<td>^{90}Y (64.1)</td>
<td>^{90}Y (64.1)</td>
<td>^{166}Ho (26.8)</td>
</tr>
<tr>
<td>$E_{\beta_{\text{max}}}$ in MeV</td>
<td>2.28 (99.9%)</td>
<td>2.28 (99.9%)</td>
<td>1.85 (>90%)</td>
</tr>
<tr>
<td>E_y in keV</td>
<td>2x 511 (<0.1%)</td>
<td>2x 511 (<0.1%)</td>
<td>81 keV (6.8%)</td>
</tr>
<tr>
<td>Microsphere material</td>
<td>Glass</td>
<td>Resin</td>
<td>Polylactic acid</td>
</tr>
<tr>
<td>Relative embolic effect</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Number of particles</td>
<td>5 million</td>
<td>50 million</td>
<td>30 million</td>
</tr>
<tr>
<td>Specific activity (Bq/microsphere)</td>
<td>1.250 – 2.500</td>
<td>50</td>
<td>330 – 450</td>
</tr>
<tr>
<td>Scout dose</td>
<td>$^{99m}\text{Tc-MAA}$</td>
<td>$^{99m}\text{Tc-MAA}$</td>
<td>^{166}Ho-MS</td>
</tr>
<tr>
<td>Contrast injection during infusion</td>
<td>Possible</td>
<td>Only alternately</td>
<td>Possible</td>
</tr>
<tr>
<td>Imaging modality</td>
<td>SPECT or PET</td>
<td>SPECT or PET</td>
<td>SPECT or MRI</td>
</tr>
</tbody>
</table>
Growing interest in radioembolization: mCRC

Systemic treatment for colorectal cancer patients with liver-dominant metastases

1st line
fluoropyrimidine based regimen + bevacizumab ± oxaliplatin / irinotecan
progression / toxicity

2nd line
irinotecan or oxaliplatin based regimen
progression / toxicity

3rd line
Anti-EGFR treatment (cetuximab or panitumumab)
progression / toxicity

INVESTIGATIONAL USE
radioembolization
radioembolization
radioembolization
radioembolization

Kras wild type?
no (60%)
yes (40%)

upward trend

References
1. FOXFIRE study, Sharma et al., Clin Oncol 2008; 20: 261-3
2. SIRFLOX study, www.sirfox.com
3. SIR-step trial, clinicaltrials.gov: NCT01895257
4. inSIRT study, Reid et al., JVIR 2012; WCIO abstracts poster 42
5. EPOCH study, clinicaltrials.gov: NCT01483027
7. Cosimelli et al., Br J Cancer, 2010; 103: 324-31

Braat et al. JNM 2015
Growing interest in radioembolization: HCC

Hepatocellular carcinoma (HCC)

- **Very early + early (BCLC 0 & A)**
 - Resection
 - Liver transplantation
 - Radiofrequency ablation
- **Intermediate + advanced (BCLC B - C)**
 - Radioembolization
 - Chemoembolization
 - Sorafenib
- **Terminal (BCLC D)**
 - Best supportive care

Treatment

- **Resection**
 - Solitary tumor
 - Milan criteria
- **Radiofrequency ablation**
 - Underlying liver disease
- **Chemoembolization**
 - Performance score 0 without portal vein thrombus
 - <5 tumors
 - HCC < 10 cm
- **Radioembolization**
 - Performance score ≤ 2
 - +/- portal vein thrombus
 - Multifocal disease
 - Tumor size > 5 cm
 - Limited extrahepatic spread
- **Sorafenib**
 - Performance score ≤ 2
 - Child-Pugh B8-9
 - Extrahepatic spread
 - Ineligible for TACE/RE
- **Best supportive care**
 - Performance score > 2 and/or
 - Child-Pugh C

criteria

- Performance score ≤ 2
- Child-Pugh B8-9
- Extrahepatic spread
- Ineligible for TACE/RE

Survival

- >70%
- 5-years survival
- 20 months
- 13-18 months
- 6-13 months
- <3 months

Braat et al. JNM 2015
Treatment mNET

mNET patients (liver-only or liver-predominant disease)

- Treat endocrine and other symptoms
 - somatostatin analogue (carcinoid);
 proton pump inhibitor (gastrinoma);
 diazoxide (Insulinoma), etc.

 - Curative or palliative resection /ablation

 - Yes: Amenable to resection/ablation

 - No: Physician preference

 - High-grade mNETs (poorly-differentiated)
 - Systemic chemo; i.e., cisplatin + etoposide

 - Low-grade mNETs
 - Systemic chemo; i.e., streptozocin + 5FU or doxorubicin + 5FU

 - Uptake of MIBG or somatostatin analogue
 - Radionuclide Therapy; i.e., 177Lu-DOTA-octreotide

 - Functional disease
 - TAE/TACE

 - Functional or non-functional disease
 - 90Y resin microspheres

Kennedy et al. 2012
“*SIRT (selective internal radiation therapy) is still an investigational method”
Radioembolization in NET; what to expect?

The Efficacy of Hepatic 90Y Resin Radioembolization for Metastatic Neuroendocrine Tumors: A Meta-Analysis

Zlatko Devcic¹, Jarrett Rosenberg², Arthur J.A. Braat³, Tust Techasith¹, Arjun Banerjee¹, Daniel Y. Sze¹, and Marnix G.E.H. Lam¹,³

¹Division of Interventional Radiology, Stanford University School of Medicine, Stanford, California; ²Radiology Sciences Laboratory, Stanford University School of Medicine, Stanford, California; and ³Department of Radiology and Nuclear Medicine, UMC Utrecht, The Netherlands

- Objective response rate 50%
- Disease control rate 86%
- Median overall survival 28.5 months
Efficacy yttrium-90 radioembolization in NET

TABLE 2
Critical Appraisal According to Research Reporting Standards for Radioembolization

<table>
<thead>
<tr>
<th>Study</th>
<th>Study year</th>
<th>Major criteria score</th>
<th>Minor criteria score</th>
<th>All criteria weighted score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennedy</td>
<td>2008</td>
<td>60%</td>
<td>33%</td>
<td>52%</td>
</tr>
<tr>
<td>Paprotka</td>
<td>2011</td>
<td>83%</td>
<td>47%</td>
<td>74%</td>
</tr>
<tr>
<td>Lacin</td>
<td>2011</td>
<td>79%</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>King</td>
<td>2007</td>
<td>88%</td>
<td>59%</td>
<td>79%</td>
</tr>
<tr>
<td>Cao</td>
<td>2010</td>
<td>80%</td>
<td>28%</td>
<td>66%</td>
</tr>
<tr>
<td>Kalinowski</td>
<td>2008</td>
<td>83%</td>
<td>58%</td>
<td>76%</td>
</tr>
<tr>
<td>Rhee</td>
<td>2008</td>
<td>75%</td>
<td>42%</td>
<td>66%</td>
</tr>
<tr>
<td>Saxena</td>
<td>2010</td>
<td>92%</td>
<td>50%</td>
<td>81%</td>
</tr>
<tr>
<td>Ezzidin</td>
<td>2012</td>
<td>88%</td>
<td>58%</td>
<td>78%</td>
</tr>
<tr>
<td>Arslan</td>
<td>2011</td>
<td>88%</td>
<td>39%</td>
<td>75%</td>
</tr>
<tr>
<td>Murthy</td>
<td>2008</td>
<td>88%</td>
<td>48%</td>
<td>76%</td>
</tr>
<tr>
<td>Ozao-Choy</td>
<td>2013</td>
<td>52%</td>
<td>19%</td>
<td>42%</td>
</tr>
</tbody>
</table>

*Total score for inclusion of minor criteria and major criteria per study.

Devcic et al. JNM 2014
Efficacy of yttrium-90 radioembolization in NET

<table>
<thead>
<tr>
<th>Study</th>
<th>CR+PR</th>
<th>Procedures</th>
<th>Proportion</th>
<th>95%-CI</th>
<th>w (fixed)</th>
<th>w (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murthy (2008)</td>
<td>1</td>
<td>8</td>
<td>0.12</td>
<td>[0.00;0.53]</td>
<td>0.9%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Kalinowski (2008)</td>
<td>6</td>
<td>9</td>
<td>0.67</td>
<td>[0.30;0.93]</td>
<td>2.1%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Lacin (2011)</td>
<td>5</td>
<td>10</td>
<td>0.50</td>
<td>[0.19;0.81]</td>
<td>2.6%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Arslan (2011)</td>
<td>8</td>
<td>10</td>
<td>0.80</td>
<td>[0.44;0.97]</td>
<td>1.7%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Ozao-Choy (2013)</td>
<td>11</td>
<td>19</td>
<td>0.58</td>
<td>[0.33;0.80]</td>
<td>4.8%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Rhee (2008)</td>
<td>8</td>
<td>16</td>
<td>0.50</td>
<td>[0.25;0.75]</td>
<td>4.2%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Ezzidin (2012)</td>
<td>7</td>
<td>23</td>
<td>0.30</td>
<td>[0.13;0.53]</td>
<td>5.1%</td>
<td>8.6%</td>
</tr>
<tr>
<td>King (2007)</td>
<td>18</td>
<td>33</td>
<td>0.55</td>
<td>[0.36;0.72]</td>
<td>8.5%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Paprottka (2011)</td>
<td>9</td>
<td>40</td>
<td>0.22</td>
<td>[0.11;0.38]</td>
<td>7.3%</td>
<td>9.7%</td>
</tr>
<tr>
<td>Saxena (2010)</td>
<td>26</td>
<td>48</td>
<td>0.54</td>
<td>[0.39;0.69]</td>
<td>12.5%</td>
<td>11.1%</td>
</tr>
<tr>
<td>Cao (2010)</td>
<td>23</td>
<td>51</td>
<td>0.45</td>
<td>[0.31;0.60]</td>
<td>13.2%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Kennedy (2008)</td>
<td>117</td>
<td>168</td>
<td>0.70</td>
<td>[0.62;0.76]</td>
<td>37.1%</td>
<td>12.8%</td>
</tr>
<tr>
<td>Fixed effect model</td>
<td>435</td>
<td></td>
<td>0.56</td>
<td>[0.51;0.60]</td>
<td>100%</td>
<td>--</td>
</tr>
<tr>
<td>Random effects model</td>
<td></td>
<td></td>
<td>0.50</td>
<td>[0.38;0.62]</td>
<td>--</td>
<td>100%</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 74.2\%$, $T^2 = 0.3386$, $P<0.0001$
Efficacy yttrium-90 radioembolization in NET

<table>
<thead>
<tr>
<th>Study</th>
<th>CR+PR+SD</th>
<th>Procedures</th>
<th>Proportion</th>
<th>95%-CI</th>
<th>w (fixed)</th>
<th>w (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murthy (2008)</td>
<td>5</td>
<td>8</td>
<td>0.62</td>
<td>[0.24;0.91]</td>
<td>4.4%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Kalinowski (2008)</td>
<td>9</td>
<td>9</td>
<td>1.00</td>
<td>[0.66;1.00]</td>
<td>1.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Lacin (2011)</td>
<td>9</td>
<td>10</td>
<td>0.90</td>
<td>[0.55;1.00]</td>
<td>2.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Arslan (2011)</td>
<td>9</td>
<td>10</td>
<td>0.90</td>
<td>[0.55;1.00]</td>
<td>2.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Ozao-Choy (2013)</td>
<td>17</td>
<td>19</td>
<td>0.89</td>
<td>[0.67;0.99]</td>
<td>4.2%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Rhee (2008)</td>
<td>15</td>
<td>16</td>
<td>0.94</td>
<td>[0.70;1.00]</td>
<td>2.2%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Ezzidin (2012)</td>
<td>21</td>
<td>23</td>
<td>0.91</td>
<td>[0.72;0.99]</td>
<td>4.3%</td>
<td>7.9%</td>
</tr>
<tr>
<td>King (2007)</td>
<td>23</td>
<td>33</td>
<td>0.70</td>
<td>[0.51;0.84]</td>
<td>16.3%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Paprottka (2011)</td>
<td>39</td>
<td>40</td>
<td>0.98</td>
<td>[0.87;1.00]</td>
<td>2.3%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Saxena (2010)</td>
<td>37</td>
<td>48</td>
<td>0.77</td>
<td>[0.63;0.88]</td>
<td>19.8%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Cao (2010)</td>
<td>39</td>
<td>51</td>
<td>0.76</td>
<td>[0.63;0.87]</td>
<td>21.4%</td>
<td>13.3%</td>
</tr>
<tr>
<td>Kennedy (2008)</td>
<td>159</td>
<td>168</td>
<td>0.95</td>
<td>[0.90;0.98]</td>
<td>19.9%</td>
<td>13.1%</td>
</tr>
</tbody>
</table>

Fixed effect model: 435
Random effects model

Proportion controlled

Heterogeneity: $I^2 = 64.6\%$, $T^2 = 0.5308$, $P<0.0011$
Radioembolization in NET
Yttrium-90 glass microspheres
Radioembolization in NET
Yttrium-90 glass microspheres

99mTc-MAA SPECT

90Y-PET
Radioembolization in NET
Yttrium-90 glass microspheres

Baseline
3-months
6-months
Radioembolization in NET
Holmium-166 microspheres
Radioembolization in NET
Yttrium-90 resin microspheres

Baseline

6-months
International multicenter retrospective study on efficacy and safety of radioembolization in neuroendocrine tumors with 90Y resin microspheres
Baseline

- **244 patients = 273 procedures**

- **Grade**
 - G1: 40%
 - G2: 35%
 - G3: 10%
 - Unknown: 15%

- **Origin**
 - pNET: 35%
 - Small bowel: 35%
 - Large bowel: 9%
 - Other: 7%
 - Unknown: 14%

- **Progressive disease in 91%**

- **Tumor burden**
 - 0-25%: 30%
 - 25-50%: 29%
 - 50-75%: 35%
 - >75%: 16%

- **LSF 6.4 ± 4.4%**

- **Activity**
 - Pres.: 1.9 ± 0.6 GBq
 - Adm.: 1.8 ± 0.8 GBq

Baseline
Efficacy

<table>
<thead>
<tr>
<th>Assessment</th>
<th>1<sup>st</sup>*</th>
<th>2<sup>nd</sup>†</th>
<th>1<sup>st</sup>*</th>
<th>2<sup>nd</sup>†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response assessment</td>
<td>RECIST 1.1</td>
<td>mRECIST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median interval ± SD (days)</td>
<td>68 ± 34</td>
<td>187 ± 48</td>
<td>89 ± 78</td>
<td>189 ± 38</td>
</tr>
<tr>
<td>Number of patients</td>
<td>244</td>
<td>116</td>
<td>126</td>
<td>70</td>
</tr>
<tr>
<td>Complete response (%)</td>
<td>1.7</td>
<td>0.9</td>
<td>7.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Partial response (%)</td>
<td>14.0</td>
<td>27.6</td>
<td>34.9</td>
<td>54.3</td>
</tr>
<tr>
<td>Stable disease (%)</td>
<td>75.6</td>
<td>62.9</td>
<td>48.4</td>
<td>28.6</td>
</tr>
<tr>
<td>Progressive disease (%)</td>
<td>8.7</td>
<td>8.6</td>
<td>8.7</td>
<td>8.6</td>
</tr>
<tr>
<td>Objective response rate (%)</td>
<td>15.7</td>
<td>28.5</td>
<td>42.8</td>
<td>62.9</td>
</tr>
<tr>
<td>Disease control rate (%)</td>
<td>91.3</td>
<td>91.4</td>
<td>91.3</td>
<td>91.4</td>
</tr>
</tbody>
</table>

*1st assessment around 3 months after radioembolization, †2nd assessment around 6 months after radioembolization.
Durable response

RECIST 1.1

- 20% improvement over time!

mRECIST

- 26% improvement over time!
Efficacy
Female 79-y with pNET grade 1, post-Whipple
Durable response

Baseline

3 months later

6 months later
Clinical response

- 60% had complaints prior to radioembolization
 - Flushing 43%
 - Diarrhea 40%
 - Fatigue 40%
 - Abdominal pain 35%
 - Nausea 10%

- After radioembolization
 - Improvement: 44%
 - Resolution: 35%
 - No improvement: 21%
Toxicities within the first 3 months

Clinical
- **Toxicities** 56%
 - Fatigue 28%
 - Abdominal pain 27%
 - Nausea 23%
 - Vomiting 12%
 - Others <6%
- **No toxicities** 32%
- **Not reported** 12%

Biochemical
- **All CTCAE grades**
 - γGT 54%
 - Lymphocytopenia 21%
 - Alkaline phosphatase 5%
 - AST / ALT / bili / alb <3%
- **New grade CTCAE grade 3-4**
 - Lymphocytopenia 7%
 - Bilirubin / γGT 3%
 - ALT 2%
 - Alkaline phosphatase 1%
 - AST / alb / platelets <1%
Complications

<table>
<thead>
<tr>
<th>Angiography</th>
<th>Radioembolization-induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Arterial dissection 0.8%</td>
<td>• Radiation ulcer 2.8%</td>
</tr>
<tr>
<td></td>
<td>• REILD 0.8%</td>
</tr>
<tr>
<td></td>
<td>• Radiation pneumonitis 0.4%</td>
</tr>
<tr>
<td></td>
<td>• Abscess / cholangitis 0.4%</td>
</tr>
</tbody>
</table>
Survival

Survival Functions

- **Grade 1**: 3.1 years
- **Grade 2**: 2.4 years
- **Grade 3**: 0.9 years
- **Overall**: 2.6 years
Response versus survival

A. Objective response rate RECIST 1.1
B. Disease control rate RECIST 1.1

C. Objective response rate mRECIST
D. Disease control rate mRECIST

- Non-responder
- Responder
- Non-responder - censored
- Responder - censored
<table>
<thead>
<tr>
<th>Author</th>
<th>Treatment</th>
<th>N</th>
<th>Liver involvement</th>
<th>Median survival (months)</th>
<th>5-year survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamberlain (2000)</td>
<td>Surgical resection</td>
<td>85</td>
<td>0%-25% 25%-50% 50%-75% >75%</td>
<td>-</td>
<td>90% 83%</td>
</tr>
<tr>
<td>Yao (2001)</td>
<td>Surgical resection</td>
<td></td>
<td><4 liver metastases</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>Gupta (2005)</td>
<td>TAE or TACE</td>
<td>123</td>
<td>0%-25% 25%-50% 50%-75% >75%</td>
<td>86</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PRRT</td>
<td>310</td>
<td>None Moderate Extensive</td>
<td>>48 >48 25</td>
<td>-</td>
</tr>
</tbody>
</table>

Increased liver tumor load = decreased survival
How do we improve treatment of NET patients with excessive liver disease?
Intra-arterial hepatic lutetium-177-dotatate

Gallium-68-DOTATOC PET/CT, intravenous (A) versus intra-arterial (B) administration in a patient with hypervascular liver metastasis (C). A 3.2-fold increase was observed.

Kratochwil et al. Clin Cancer Res 2010
Lutetium-177-dotatate combined with holmium-166 radioembolization

<table>
<thead>
<tr>
<th>Interval in weeks</th>
<th>200 mCi 177Lu-Dotatate</th>
<th>200 mCi 177Lu-Dotatate</th>
<th>200 mCi 177Lu-Dotatate</th>
<th>200 mCi 177Lu-Dotatate</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
</tr>
</tbody>
</table>

Radioembolization
Non-randomized single arm phase 2 efficacy study

Boost on liver using hepatic radioembolization

HEPAR⁺

Lutetium-177-dotatate
4 x 7400 MBq

Holmium-166 radioembolization

\(^{177}\text{Lu}\)

\(^{166}\text{Ho}\)
Lutetium-177-dotatate combined with holmium-166 radioembolization
Conclusions

Liver-directed treatments may lead to overall treatment improvement in NET patients

Radioembolization in NET leads to durable responses