SIRT: State of the ART

Marnix G.E.H. Lam, MD, PhD
Professor of Nuclear Medicine
Disclosure of speaker’s interests

Consultant for BTG, Sirtex and Terumo

The department of Radiology and Nuclear Medicine of the UMC Utrecht receives royalties and research support from Terumo / Quirem Medical
Radioembolization

- Scout dose
- Treatment
- Discharge

24 hours
Scout dose

• Current gold standard in radioembolization work-up

• Why?
 – Excluding extrahepatic depositions
 – Assessing lung shunting
 – Assessing intrahepatic distribution
Scout dose

- Current gold standard in radioembolization work-up
- Why?
 - Excluding extrahepatic depositions
 - Assessing lung shunting
 - Assessing intrahepatic distribution
Excluding extrahepatic deposition
Excluding extrahepatic deposition

catheter in coeliac trunc

LHA

RHA

GDA
Excluding extrahepatic deposition

Injection position for $^{99m}\text{Tc-MAA}$
CIRSE Questionnaire

60 hospitals, 15 countries
CIRSE Questionnaire

Type of microspheres (in %)

- SIRSpheres (Resin) 40%
- TheraSpheres (Glass) 25%
- Both 35%
Always/most of the time coiled: 2011
Gastroduodenal 71%
Right gastric 59%
Cystic 41%

Powerski, Eur J Rad 2012

It is now generally accepted that preventive, systematic occlusion of the gastroduodenal and right gastric arteries, among others, before any RE is not only needless but also dangerous and even harmful

Bilbao, JVIR 2014
General consensus

Injection positions for 99mTc-MAA
Early development of arterial tree

Embryo

Jin *et al.*, Liver Transplantation 2008

Adult liver

van den Hoven *et al.*, CVIR 2014
Segmental Hepatic Arterial Vascularization Patterns

<table>
<thead>
<tr>
<th>Type</th>
<th>Originating from the Celiac Axis</th>
<th>Originating from the SMA</th>
<th>Originating from the LGA</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) No aberrant hepatic arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>LHA [2-4] & RHA [5-8]</td>
<td>-</td>
<td>-</td>
<td>73 (66%)</td>
</tr>
<tr>
<td>1b</td>
<td>LHA [2-3] & RHA [4-8]</td>
<td>-</td>
<td>-</td>
<td>51 (46%)</td>
</tr>
<tr>
<td>1c</td>
<td>LHA [2-3], MHA [4] & RHA [5-8]</td>
<td>-</td>
<td>-</td>
<td>21 (19%)</td>
</tr>
<tr>
<td>2) Aberrant left hepatic arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>RHA [4-8]</td>
<td>-</td>
<td>rLHA [2-3]</td>
<td>10 (9%)</td>
</tr>
<tr>
<td>2b</td>
<td>RHA [5-8]</td>
<td>-</td>
<td>rLHA [2-4]</td>
<td>7 (6%)</td>
</tr>
<tr>
<td>3) Aberrant right hepatic arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>LHA [2-4]</td>
<td>rRHA [5-8]</td>
<td>-</td>
<td>15 (14%)</td>
</tr>
<tr>
<td>3b</td>
<td>LHA [2-3]</td>
<td>rRHA [4-8]</td>
<td>-</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>3c</td>
<td>LHA [2-4]</td>
<td>rRHA [4-8]</td>
<td>-</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>3d</td>
<td>LHA [2-3], RHA [4-6-8] & aRHA [5]</td>
<td></td>
<td></td>
<td>1 (1%)</td>
</tr>
<tr>
<td>4) Aberrant right and left hepatic arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>rRHA [5-8]</td>
<td>rLHA [2-4]</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>4e</td>
<td>RHA [7]</td>
<td>aRHA [5,6,8]</td>
<td>rLHA [2-4]</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>5) Replaced common hepatic artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LHA [2-4] & RHA [5-8]</td>
<td>-</td>
<td>3 (3%)</td>
</tr>
</tbody>
</table>
Results – unidentified aberrant hepatic arteries

CT

$^{99m}\text{Tc}\text{-MAA SPECT/CT}$

$^{90}\text{Y-PET/CT}$
Practical approach

Pretreatment CT

Retroportal course
Aberrant RHA from SMA

Fissure for lig. venosum
Aberrant LHA from LGA
Identification of aberrant hepatic arteries (right vs. left)

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th></th>
<th></th>
<th>Angiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>abRHA's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>54%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>46%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abLHA's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abRHA's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abLHA's</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>69%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>31%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p = 0.007
Note that the S4A does not fill with contrast agent (arrow) and that the catheter is directed towards the vessel wall.

Post-treatment 90Y PET/CT scan demonstrates a wedge-shaped lack of activity in tumor-bearing segment 4 (arrow).
Excluding extrahepatic deposition

Accessory left gastric artery coming off the left hepatic artery
Excluding extrahepatic deposition
CIRSE Questionnaire

Reason to use Cone beam CT

- Not used at all: 22%
- Extrahepatic deposition assessment: 52%
- To check tumor coverage: 65%
- For volumetric analysis: 30%
- Other: 3%
Cone beam CT
Scout dose

- Current gold standard in radioembolization work-up

- Why?
 - Excluding extrahepatic depositions
 - Assessing lung shunting
 - Assessing intrahepatic distribution
CIRSE Questionnaire

Percentage of centers that exclude patients because of too high lung-shunt percentage

- **52%** of centers exclude patients with lung-shunt percentage of 0 - 1%
- **28%** of centers exclude patients with lung-shunt percentage of 2 - 5%
- **17%** of centers exclude patients with lung-shunt percentage of 6 - 10%
- **3%** of centers exclude patients with lung-shunt percentage of 11 - 25%
- Less than **3%** of centers exclude patients with lung-shunt percentage above 25%
Percentage of centers that reduce dose because of too high lungshunt percentage

CIRSE Questionnaire

Percentage of centers that reduce dose because of too high lungshunt percentage:

- 0 - 1%: 35%
- 2 - 5%: 45%
- 6 - 10%: 17%
- 11 - 25%: 3%
- > 25%: 0%
Scout dose

99mTc-MAA

Microspheres

20 µm
Lung shunt

Microspheres get stuck arterioles
↓
Shake the 99mTc-MAA syringe
↓
Particles break
↓
<10 µm + Free 99mTc-pertechnetate
↓
Physiologic shunting!
99mTc-MAA overestimates the lung shunt

99mTc-MAA; 30 Gy

166Ho scout dose; 0.02 Gy

166Ho treatment; 0.01 Gy

Elschot et al. EJNMMI 2014
Scout dose

• Current gold standard in radioembolization work-up

• Why?
 – Excluding extrahepatic depositions
 – Assessing lung shunting
 – Assessing intrahepatic distribution
DOSIMETRY
Radiation absorbed dose matters!

A dominant reason for radioembolization failure!

Wasan et al. Lancet Oncology 2017
BSA-method

1.82 GBq

REILD

1.85 GBq

Progressive disease
Dosimetry is a balancing act!

What is an effective tumor absorbed dose?

What is an acceptable liver absorbed dose?

How do we know?
Validated methodology is needed!
Bilobar treatment from proper hepatic (mCRC)

Baseline PET/CT

CACT: RHA (blue) and LHA (red)

Preferential flow to LHA

Response at 2 m.
Simplicit90Y dosimetry software
Personalized radioembolization

<table>
<thead>
<tr>
<th></th>
<th>Average abs. dose</th>
<th>Tumor abs. dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hepatica sinistra</td>
<td>220 Gray</td>
<td>420 Gray</td>
</tr>
<tr>
<td>A. Hepatica dextra</td>
<td>40 Gray</td>
<td>140 Gray</td>
</tr>
</tbody>
</table>

Patient was additionally treated with an 80 Gray average absorbed dose (yttrium-90 glass microspheres) in the RHA
Dosimetry

One-compartment modeling:
- No differentiation between tumor and non-tumor
- Average absorbed dose in the target volume

Two-compartment modeling:
- Differentiation between tumor and non-tumor
- Average absorbed dose in the tumor (and/or non-tumor)

Voxel based dosimetry:
- Differentiation within the tumor (and non-tumor)
- Dose volume histogram analysis
Pre-treatment scout dose SPECT/CT

Normal liver absorbed dose?
Pre-treatment scout dose distribution
What is the normal liver absorbed dose?

Absorbed dose > 30 Gy

Dose-volume histogram:
Ho deposited in healthy liver tissue

Percentage of healthy tissue

Deposited dose (Gy)

55%

Absorbed dose > 30 Gy
Individualized radioembolization

Scout dose → Treatment → Discharge

24 hours

Dose-volume histogram:
- No deposited in healthy liver tissue

- Percentage of healthy tissue
- Deposited dose (Gy)
Conclusion

- CACT may largely replace SPECT/CT for extrahepatic activity evaluation (know your anatomy!)

- Lung shunt assessment using 99mTc-MAA is unreliable

- SPECT-CT scout dose evaluation becomes increasingly important for dosimetry and individualized treatment planning!