Radiopharmacy basics

Dr. Zéna Wimana, PhD
Biomedical Scientist/Radiopharmacy Coordinator
Nuclear Medicine/Radiopharmacy
Institut Jules Bordet
Université Libre de Bruxelles (U.L.B.)
Radiopharmacy

“*The Preparation of high quality, radioactive, medicinal products for use in diagnosis and therapy.*”

- **Expertise**: Special licensure; Radiopharmacy normally allied to medical physics
- **Radioprotection**: of those working with the substances
- **Quality control**: ensuring the correct formulation and efficacy
- **Storage**: Decay, and other considerations
- **Correct usage**: liaise with other professions

➡ **Critical to the implementation of nuclear medicine**
Development of a radiopharmaceutical in oncology

Concept

Target
- ↑↑ Expression in cancer cells
- Hallmark of cancer

Probe
- Specific

Radiolabeling

Target

Concept

Probe

Radiolabeling
Radiolabeling: Radionuclide & Method

Choice of Radionuclide

- **Purpose:**
 - Therapy: β^- vs α
 - Imaging: SPECT (γ) vs PET (β^+)
- Physical/chemical characteristics
- Optimal tumor-to-nontumor ratios $\approx \text{Physical } t_{1/2} \text{ isotope}$
- Cyclotron ($^{18}\text{F}, ^{11}\text{C},...$) vs. generator ($^{99m}\text{Tc}, ^{68}\text{Ga}$)
- Availability and price

Choice of method

- Direct
- Indirect radiolabeling
 - Modification of precursor with a bifunctional chelator
 - Transchelation: low to high affinity
- Intravenous injection: aseptic techniques (sterile filtration)
- Protection of those preparing the drug
- Manual vs automatic vs kits
Radiolabeling: Quality controls

Reception
- Pakaging
- Documentation
- Swab/Wipe test swabbing potentially contaminated surface with a media capable of absorbing radioactivity.

 “Q-tips”, alcohol swabs and filter paper are all suitable media for a wipe test survey.

Working place
- Materials: conservation
- Machines: calibration and maintenance
- Clean working space
- LAF: Yearly maintenance and test

Product
- Physico-chemical properties
- Pharmacological properties
Radiolabeling: Quality controls

Appearance
- Powder
- Solution
- Particles in solution
- Color
- Clear
- Homogenous

<table>
<thead>
<tr>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH indicator strips:</td>
</tr>
<tr>
<td>+ Easy, single use, little sample</td>
</tr>
</tbody>
</table>

Equipment: indicator strips/paper desired pH

1. Immerge in sample or place a drop on pH paper
2. Read the color code

pH meter:

Equipment: pH meter with electrode

- + refined, adjusting possible

1. Immerge electrode
2. Read the measurement
Radiolabeling: Quality controls

<table>
<thead>
<tr>
<th>Type of purity</th>
<th>Definition</th>
<th>methods</th>
<th>Effect of impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclidic</td>
<td>radioactivity desired radionuclide / the total radioactivity of the source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiochemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiolabeling: Quality controls

Radionuclide purity

- **Energy spectrum**: “fingerprint of the radioisotope
- **Decay** (eg. 68Ga 68 min vs 68Ge 270d)

Equipment:

- **Isotope Calibrator**: ionisation chamber
- **Gamma counters**: sodium iodide scintillation
 - small amounts of radioactivity
 - 'counts per minute'
 - automated → many samples in succession
 - clinical samples: blood or urine,
 - QC: TLC strips cut up into several pieces
 - swabs used for wipe tests
- **Beta counters**: liquid scintillation detectors
 - beta radiation: 14C, 3H and 32P, that emit
 - auger electrons: 51Cr and 125I.
Radiolabeling: Quality controls

<table>
<thead>
<tr>
<th>Type of purity</th>
<th>Definition</th>
<th>methods</th>
<th>Effect of impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclidic</td>
<td>radionuclide / the total radioactivity of the source</td>
<td>Dose Calibrator/Multichannel Analyzer</td>
<td>Increased Radiation Dose, Poor Image Quality</td>
</tr>
<tr>
<td>Chemical</td>
<td>stated chemical form/the total mass present</td>
<td>Colorimetric or HPLC</td>
<td>Poor Image Quality</td>
</tr>
<tr>
<td>Radiochemical</td>
<td>desired radiolabelled species/total radioactivity</td>
<td>TLC or radio-HPLC</td>
<td>Poor Image Quality, Altered Radiation Dose</td>
</tr>
<tr>
<td>Bacteriological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiolabeling: Quality controls

Radiochemical Purity

Thin-layer chromatography (TLC):
- Differential distribution liquid (mobile) phase vs solid (stationary) support
- Mostly consisting of silica gel, normally bound to glass-fibre sheets. (ITLC).
- **Equipment:** Beaker & lid, TLC plate, solvent
 1. Line on the TLC plate
 2. Drop product on TLC plate
 3. Plate into beaker containing solvent, cover
 4. Let solvent reach almost top
 5. Analyze:
 - Cut into pieces and count in γ-counter
 - Autoradiography

High Pressure Liquid Chromatography (HPLC):
- Separation down a column by elution with a suitable mobile phase
- Can be performed using a very efficient separation mode
- **Equipment:** radio-HPLC, column, mobile phase
 1. Pre-conditioning column with mobile phase
 2. Injection onto the column
 3. Run
 4. Analyze graphs
Radiolabeling: Quality controls

<table>
<thead>
<tr>
<th>Type of purity</th>
<th>Definition</th>
<th>methods</th>
<th>Effect of impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclidic</td>
<td>radioactivity desired radionuclide / the total radioactivity of the source</td>
<td>Dose Calibrator/Multichannel Analyzer</td>
<td>Increased Radiation Dose, Poor Image Quality</td>
</tr>
<tr>
<td>Chemical</td>
<td>stated chemical form/the total mass present</td>
<td>Colorimetric or HPLC</td>
<td>Poor Image Quality</td>
</tr>
<tr>
<td>Radiochemical</td>
<td>desired radiolabelled species/total radioactivity</td>
<td>TLC or radio-HPLC</td>
<td>Poor Image Quality, Altered Radiation Dose</td>
</tr>
<tr>
<td>Bacteriological</td>
<td>No Bacterial presence</td>
<td>Bacterial culture</td>
<td>Non sterile</td>
</tr>
<tr>
<td>Serological</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiolabeling: Quality controls

Sterility

No micro-organisms in the preparation?
- Most iv administration → sterile
- working in a clean environment
- aseptic transfer techniques

Equipment:
LAF, bacterial culture media, 37°C incubator
- Under aseptical conditions

1. Transfer sample into bacterial culture in duplicate
2. Incubate for 10-14d at 37°C
3. Visual inspection of media
 → Clear ✓

Pyrogenicity

No bacterial endotoxin?
- fragments of the bacteria → pyrogenic response (chills, fever, myalgia,...)
- IV 2.5 EU/kg, IT 0.2 EU/kg (PhEur)
- Method A. The gel-clot technique
- Method B. The turbidimetric technique
- Method C. The chromogenic technique

Equipment: Endosafe, endotoxin-free water, LAL cassette (contains LAL, standard)

1. Turn Endosafe on, add cassette
2. Add sample
3. Run test
4. Read results
 → < 0,5EU/mL ✓
Radiolabeling: Quality controls

<table>
<thead>
<tr>
<th>Type of purity</th>
<th>Definition</th>
<th>methods</th>
<th>Effect of impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radionuclidian</td>
<td>radioactivity desired radionuclide / the total radioactivity of the source</td>
<td>Dose Calibrator/ Multichannel Analyzer</td>
<td>Increased Radiation Dose, Poor Image Quality</td>
</tr>
<tr>
<td>Chemical</td>
<td>stated chemical form/the total mass present</td>
<td>Colorimetric or HPLC</td>
<td>Poor Image Quality</td>
</tr>
<tr>
<td>Radiochemical</td>
<td>desired radiolabelled species/total radioactivity</td>
<td>TLC or radio-HPLC</td>
<td>Poor Image Quality, Altered Radiation Dose</td>
</tr>
<tr>
<td>Bacteriological</td>
<td>No Bacterial presence</td>
<td>Bacterial culture</td>
<td>Non sterile → Infection</td>
</tr>
<tr>
<td>Serological</td>
<td>No Viral presence</td>
<td>RT-PCR</td>
<td></td>
</tr>
</tbody>
</table>
Development of a radiopharmaceutical in oncology

Target
- Expression in cancer cells
- Hallmark of cancer

Probe
- Specific

Radiolabeling
- Choice of radioisotope
- Choice of the method
- QC: Conform
In vitro biological properties

Models: cells overexpressing the particular target

Knowledge: tracer properties + maintenance of specific characteristics

How: binding/internalization study

- Gamma counter or Autoradiography
Development of a radiopharmaceutical in oncology

Target
- Expression in cancer cells
- Hallmark of cancer

Probe
- Specific

Radiolabeling
- Choice of radioisotope
- Choice of the method
- QC: Conform

In vitro
- Model: cells (target)
- Binding/Internalisation
Models:
Small animal expressing the desired target
- Inoculation of a cancer cell lines
- Genetic modification
- Patient tumor graft (PDX)

Knowledge:
- targeting properties
- biodistribution
- pharmacokinetics

How:
- ex vivo dissection
- ex vivo autoradiography
- in vivo imaging studies

In vivo imaging studies: facilitates extrapolation from animals to human studies
Development of a radiopharmaceutical in oncology

Target
- Expression in cancer cells
- Hallmark of cancer

Probe
- Specific

Radiolabeling
- Choice of radioisotope
- Choice of the method
- QC

Preclinical

- **In vitro**
 - Model: cells (↗↗ target)
 - Binding/Internalisation

- **In vivo**
 - Model: animal (↗↗ target)
 - Imaging & ex vivo (distribution, PK,...)
Imaging of the radiotracer in patients

- Imaging = Translational!

Regulatory steps:
- IMPD
- FAMHP & FANC
- Ethical committee

Knowledge:
- Targeting properties
- Biodistribution
- Pharmacokinetics
- Dosimetry

How:
- In vivo imaging studies
- Blood samples

➤ **Ultimate test of the quality of a radiopharmaceutical:**
 biological behavior and the distribution in the patient

18F-FDG 89Zr-Trastuzumab

Dr. Geraldine Gebhart (5/10/17)
Development of a radiopharmaceutical in oncology

Concept

Target
- Expression in cancer cells
- Hallmark of cancer

Probe
- Specific

Radiolabeling
- Choice of radioisotope
- Choice of the method
- QC

In vitro
- Model: cells (↗↗ target)
- Binding/Internalisation

In vivo
- Model: animal (↗ target)
- Imaging & ex vivo (distribution, PK,...)

Preclinical

In patients
- Regulatory steps: IMPD FAMHP, FANC, ethical committee
- Imaging & distribution, PK,...
Radiolabeling

- 68Ga-DOTATATE (NET-PET) 03/10/17
- 177Lu-DOTATATE (NET-PRRT) 05/10/17
- 89Zr-trastuzumab (HER2-PET) 06/10/17
- 68Ga-PSMA (PSMA-PET)
Radiopharmacy:
Prof. G. Ghanem
Dr. Z. Wimana
Ms. A. Dematos
Mr. Pierre Huget
radiopharmacie@bordet.be