IAEA RTC
PET/CT imaging of head & neck cancer

Maria José García Velloso
Servicio de Medicina Nuclear
Clínica Universidad de Navarra
mjgarciave@unav.es

Glucose metabolism and FDG uptake

\[\text{Glucogen} \]

\[\text{Glicolisis} \]

\[\text{Pentoses-P} \]

Lack of group OH in C2

1^8FDG-1P

1^8FDG-6P

1^8FDPGL

GLUT-1

1^8FDG

HK

G6Pase

\[\text{TRAPPED} \]

\[\text{TRACER} \]

\[\text{Isomerase} \]

\[\text{PGmutase} \]
FDG uptake

FDG PET/CT imaging of head & neck cancer

False positive

- Surgical Procedures
 - Biopsy, dental care
- Infection
 - Sinusitis, abscess, TB, sarcoidosis, parodontitis.
- Radiation-induced injury
- Tiroiditis
- FDG uptake in muscles
 - Stress
 - Crying, speech
 - Chewing
- Brown fat

PET/CT facilitates the interpretation

UCLA
FDG PET/CT imaging of head & neck cancer
Indications FDG

- Staging
 - Carcinoma of unknown primary
 - Detection of lymph node metastases
 - Detection of distant metastases
 - Detection of second primary tumours
- Treatment Planning
 - Treatment monitoring
 - Detection of disease recurrence

Hustinx R, et al. EJNM Mol Imaging 2010;37:645-651

FDG PET/CT. Carcinoma of unknown primary:
Lymph node metastases from squamous cell carcinoma

- FDG PET overall success is around 27%
 - PET/CT is around 50%
FDG PET/CT. Carcinoma of unknown primary:
Lymph node metastases from squamous cell carcinoma

- FDG PET overall success is around 27% after all other modalities have failed
 - PET/CT is around 50%
- False positive after recent biopsy
 - Exhaustive conventional evaluation:
 - TC, endoscopy, biopsy

FDG PET/CT. Carcinoma of unknown primary:
Lymph node metastases from squamous cell carcinoma

<table>
<thead>
<tr>
<th></th>
<th>PET+</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharinx</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Maxilar sinus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lung/mediastinum</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Axila</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Abdomen/multiple</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>33/60</td>
<td>18</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

FDG PET/CT. Carcinoma of unknown primary:
Lymph node metastases from squamous cell carcinoma

- FDG PET overall success is around 27% after all other modalities have failed
 - PET/CT is around 50%
- False positive after recent biopsy
 - Exhaustive conventional evaluation:
 - TC, endoscopy, biopsy
- Non-squamous, less frequent
 - Salivary gland cancer

FDG PET/CT imaging of head & neck cancer
Staging (T)

- Primary tumor identification: comparable to CT/RM
 - Limitation: small tumors (≤ 8-10 mm)
- Advantage: evaluation of submucosal extension
 - PET may understate
- Differentiation between tumor mass and mucus secretion / inflammation in sinonasal tumors.
- Limitation: spatial resolution
 - PET do not report invasion of cartilage or perineural tissue.

PET/CT
FDG PET/CT imaging of head & neck cancer
Staging (N)

- Detection of nodal infiltration: FDG PET/CT improvement over CDT (CT and MRI)

FDG PET/CT imaging of head & neck cancer
¿why metabolic imaging?

- Nodal staging with conventional diagnostic techniques (CDT) is suboptimal.
 - FDG PET/CT in cN0?
- The under- and over-staging may compromise tumor control and/or treatment effectiveness.
- The biological heterogeneity has a major impact on tumor response to chemotherapy and radiation therapy.
- The interpretation of CDT after treatment is difficult due to loss of normal anatomical planes, and the presence of oedema, inflammation and fibrosis.
18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI.

FDG PET/CT VP

In studies in which both 18F-FDG PET and conventional diagnostic tests were performed, sensitivity and specificity of 18F-FDG PET were 80% and 86%, respectively, and of conventional diagnostic tests were 75% and 79%, respectively.

FDG PET/CT: Estadificación ganglionar

- FDG PET/CT higher sensitivity than CT and MR
 - Detection of lymph node metastases ≥ 5 mm
 Kyzas PA. J Natl Cancer Inst 2008
 S=80% y Sp=86%
 - In patients with a clinically negative (cN0) neck
 S=50% in cN0

Sentinel node biopsy
FDG PET/CT: Distant metastases

- Ca. undifferentiated of the larnix. Recurrence
 - SUV$_{max}$=17.5
 - SUV$_{max}$=20.7
 - SUV$_{max}$=9.7
 - SUV$_{max}$=10.8

- FDG PET improves staging and patient management
 - Recommendations on the use of 18F-FDG PET in oncology
 - Prospective, 71 patients
 - FDG PET detects added lesions in 40%
 - FDG PET changes clinical management in 34%
 - Lonneux M. J Clin Oncol 2010; 28:1190-1195
 - Multicenter, prospective study, 233 patients
 - PET-FDG altered the management of 13.7% of patients (32/233)
FDG PET/CT: Epidermoid tumor in the larynx
Second primary epidermoid: lung

FDG PET/CT: Epidermoid tumor in the larynx
Second primary epidermoid: lung
FDG PET/CT: Larynx carcinoma
Second primary: adrenal cortex carcinoma

FDG PET/CT: Treatment monitoring

- FDG PET has a higher diagnostic yield than CDT
FDG PET/CT: Treatment monitoring

FDG PET/CT en tumores de cabeza y cuello
Valoración precoz de respuesta
FDG PET/CT:
Treatment monitoring

- FDG PET/CT higher **prognostic value** than TDC
 - Connell CA. Head & Neck 2007
 - A complete metabolic response was predictive of overall survival (**OS**)
 - Hentschel M. Eur J Nucl Med Mol Im 2011;38:1203-1211
 - Prospective, 37 patients
 - Early FDG PET at 10 or 20 Gy under chemoradiotherapy
 - The decrease of SUVmax > 50% is prognostic for **OS, DFS y LRC**
 - Castaldi P. Radiotherapy Oncol 2012; 103:63-68
 - Prospective, 26 patients
 - PET-FDG baseline - 2 weeks - 8-12 weeks
 - Only PET-FDG 8-12 weeks predicts **DFS y DSS** (disease specific S)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>N</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>PNV</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong RJ</td>
<td>2002</td>
<td>143</td>
<td>Local: 97</td>
<td>Regional: 92</td>
<td>54</td>
<td>99</td>
<td>7 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local: 79</td>
<td>Regional: 95</td>
<td>77</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Yao M</td>
<td>2005</td>
<td>85</td>
<td>Local: 86</td>
<td>Regional: 100</td>
<td>55</td>
<td>98</td>
<td>3-5 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local: 90</td>
<td>Regional: 96</td>
<td>78</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Porceddu SV</td>
<td>2005</td>
<td>39</td>
<td>Regional: 88</td>
<td>Regional: 100</td>
<td>100</td>
<td>97</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Ryan WR</td>
<td>2005</td>
<td>103</td>
<td>Local: 87</td>
<td>Regional: 79</td>
<td>54</td>
<td>98</td>
<td>8 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local: 89</td>
<td>Regional: 95</td>
<td>75</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Andrade RS</td>
<td>2006</td>
<td>28</td>
<td>Local: 77</td>
<td>Local: 93</td>
<td>91</td>
<td>82</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Chen AY</td>
<td>2006</td>
<td>30</td>
<td>Local: 50</td>
<td>Regional: 100</td>
<td>20</td>
<td>95</td>
<td>7 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local: 85</td>
<td>Regional: 70</td>
<td>36</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Kim SY</td>
<td>2007</td>
<td>97</td>
<td>Local: 83</td>
<td>Regional: 100</td>
<td>59</td>
<td>98</td>
<td>4 weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Local: 92</td>
<td>Regional: 99</td>
<td>83</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

FDG PET/CT:
Treatment monitoring (Chemo and Radion therapy)
FDG PET/CT imaging of head & neck cancer: Detection of disease recurrence

- Previous treatments produce distortion
 - Mucosal surfaces
 - Tissue planes
 - Anatomical structures
- Difficulty in interpreting CDT
 - Soft tissue edema
 - Inflammation
 - Fibrosis
- Early detection of recurrence increases the likelihood of effective treatment.

FDG PET/CT imaging of head & neck cancer: Detection of disease recurrence

- FDG PET higher diagnostic accuracy than CT/MRI

Laryngectomy
Uncertain recurrence

SUVmax=6.8
FDG PET/CT imaging of head & neck cancer:
Detection of disease recurrence

- FDG PET higher diagnostic accuracy than CT/MRI
 - Treatment planning includes surgery, radiation, chemotherapy or combinations
 - FDG PET/CT changes the management in up to 1/3 patients
- Limitation: false positive (Radiotherapy)
 - Chen AY, Head Neck 2006
- Under investigation
 - SUV cut-off value
PET/CT imaging of head & neck cancer:
New radiopharmaceuticals

- **Amino acids:** 11C- methionine
 - Radiation Therapy Planning
 - Salivary gland function (IMRT)
- **Hipoxy:** 18F- MISO
 - Radiation Therapy Planning
 - Predictive value (response)
- **Proliferation:** 18F- FLT
 - Monitoring treatment
- **New therapeutic targets:**
 - EGFR
 - 64Cu – EGFR
 - Angiogenesis
 - 11C – VEGFR y 18F-galacto-RGD

FDG PET/CT imaging of head & neck cancer:
Summary

- **Tumor localization (unknown primary tumor)**
- **Tumor staging**
 - Cervical lymph node staging (cN0)
 - Distant metastasis
 - Detection of synchronous second primary tumors
- **Radiation therapy planning**
- **Metabolic response / Residual disease**
- **Recurrence**
 - High diagnostic accuracy
 - Early detection of recurrence
- **New radiopharmaceuticals**
 - New therapeutic targets