Fractional uptake rate revisited -
theory and clinical validation

Martin Šámal, Hana Jiskrová, Václav Ptáčník,
Daniela Kotalová, Jozef Kubinyi, Vladimír Tesař

First Faculty of Medicine, Charles University Prague
and the General University Hospital in Prague
Fractional uptake rate (FUR)

= fraction of injected activity entering the kidney per unit time

Rutland M.
Glomerular filtration rate without blood sampling.
Nucl Med Commun 1983; 4:425-433

Rutland M., Que L., Hassan I.M.
"FUR" - one size suits all.
Fractional uptake rate (FUR)

= fraction of injected activity entering the kidney per unit time

\[FUR = \frac{kP(0)}{D} \quad [s^{-1}] = [s^{-1}][cps]/[cps] \]
Fractional uptake rate (FUR)

\[FUR = kP(0) / D \quad [s^{-1}] = [s^{-1}][cps]/[cps] \]

\(k \) = slope of Patlak-Rutland plot
Fractional uptake rate (FUR)

= fraction of injected activity entering the kidney per unit time

\[
FUR = \frac{kP(0)}{D} \quad \left[s^{-1} \right] = \left[s^{-1} \right][cps]/[cps]
\]

- \(k \) = slope of Patlak-Rutland plot
- \(P(0) \) = precordial curve extrapolated to \(t = 0 \)
Fractional uptake rate (FUR)

= fraction of injected activity entering the kidney per unit time

\[FUR = \frac{kP(0)}{D} \quad \text{[s}^{-1}\text{]} = \text{[s}^{-1}\text{]} \text{[cps]} / \text{[cps]} \]

- \(k \) = slope of Patlak-Rutland plot
- \(D \) = administered activity
- \(P(0) \) = precordial curve extrapolated to \(t = 0 \)
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]

Stewart-Hamilton principle
 uptake rate in an organ is proportional to plasma concentration, constant of proportionality is the organ clearance
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]

Stewart-Hamilton principle

- uptake rate in an organ is proportional to plasma concentration, constant of proportionality is the organ clearance

\[\frac{dR(t)}{dt} \] = uptake rate in the kidney

\[R(t) \] = depth-corrected kidney counts after tissue and vascular background subtraction
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]

Stewart-Hamilton principle: uptake rate in an organ is proportional to plasma concentration, constant of proportionality is the organ clearance

\[Z = \text{renal clearance} \]

\[\frac{dR(t)}{dt} = \text{uptake rate in the kidney} \]

\[R(t) = \text{depth-corrected kidney counts after tissue and vascular background subtraction} \]
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]

Stewart-Hamilton principle
- uptake rate in an organ is proportional to plasma concentration, constant of proportionality is the organ clearance

c(t) = plasma concentration

Z = renal clearance

\[\frac{dR(t)}{dt} = \text{uptake rate in the kidney} \]

\[R(t) = \text{depth-corrected kidney} \]

\[\text{counts after tissue and vascular background subtraction} \]
Alternative interpretation of FUR

\[
dR(t) / dt = Z c(t)
\]

Stewart-Hamilton principle

\[
dR(0) / dt = Z D / V_P
\]

\[c(0) = D / V_P\]

\[D = \text{injected activity}\]

\[V_P = \text{total plasma volume}\]
Alternative interpretation of FUR

\[
d\frac{R(t)}{dt} = Zc(t)
\]

\[
d\frac{R(0)}{dt} = \frac{ZD}{V_P}
\]

\[c(0) = \frac{D}{V_P}\]

\[D = \text{injected activity}\]

\[V_P = \text{total plasma volume}\]

\[\text{d}R(0)/\text{dt cannot be measured reliably}\]
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]
\[\frac{dR(0)}{dt} = \frac{ZD}{V_P} \]
\[kP(0) = \frac{ZD}{V_P} \]

Stewart-Hamilton principle

\[c(0) = \frac{D}{V_P} \]

\[\frac{dR(0)}{dt} = kP(0) \]
tracer entering the kidney at \(t = 0 \)

\(k \) = uptake constant

\(P(0) \) = precordial curve extrapolated to \(t = 0 \)
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]
\[\frac{dR(0)}{dt} = \frac{ZD}{V_P} \]
\[kP(0) = \frac{ZD}{V_P} \]
\[FUR = \frac{kP(0)}{D} = \frac{Z}{V_P} \]

Stewart-Hamilton principle

\[c(0) = \frac{D}{V_P} \]
\[\frac{dR(0)}{dt} = kP(0) \]
Alternative interpretation of FUR

\[
\frac{dR(t)}{dt} = Zc(t) \quad \text{(Stewart-Hamilton principle)}
\]

\[
\frac{dR(0)}{dt} = \frac{ZD}{V_p}
\]

\[
kP(0) = \frac{ZD}{V_p}
\]

\[
FUR = \frac{kP(0)}{D} = \frac{Z}{V_p}
\]

\[
\frac{dR(0)}{dt} = kP(0)
\]

= fraction of injected dose entering the kidney per unit time
Alternative interpretation of FUR

\[\frac{dR(t)}{dt} = Zc(t) \]
\[\frac{dR(0)}{dt} = ZD/V_p \]
\[kP(0) = ZD/V_p \]
\[FUR = \frac{kP(0)}{D} = \frac{Z}{V_p} \]

Stewart-Hamilton principle

\[c(0) = \frac{D}{V_p} \]

\[\frac{dR(0)}{dt} = kP(0) \]

= fraction of total plasma volume cleared by the kidney per unit time

= fraction of injected dose entering the kidney per unit time
Alternative model of renal uptake

\[k_L \int P(t)dt + k_R \int P(t)dt + k_E \int P(t)dt + k_P P(t) = D \]

- left kidney
- right kidney
- elsewhere
- plasma = total
Alternative model of renal uptake

\[D = k_{\text{lumped}} \int_{0}^{t} P(t) \, dt + k_P P(t) \]

amount removed from plasma up to time \(t \)
Alternative model of renal uptake

\[D = k_{lumped} \int_0^t P(t) \, dt + k_P P(t) \]

- residue in plasma at time \(t \)
- amount removed from plasma up to time \(t \)
Alternative model of renal uptake

\[D = k_{lumped} \int_{0}^{t} P(t) dt + k_P P(t) \]

- \(k_{lumped} \) = the sum of uptake constants \(k_L + k_R + k_E \)
- Residue in plasma at time \(t \)
- Amount removed from plasma up to time \(t \)
Alternative model of renal uptake

\[k_{\text{lumped}} = \text{the sum of uptake constants } k_L + k_R + k_E \]

\[D = k_{\text{lumped}} \int_0^t P(t) dt + k_P P(t) \]

\[k_P = V_P / V_H = \text{constant scaling plasma volume in the heart ROI } (V_H) \text{ to total plasma volume } (V_P) - \text{how many times } V_H \text{ included in } V_P \]
Alternative calculation of FUR

\[k_{lumped} \left[\int \frac{P(t) \, dt}{P(t)} \right] + k_p = \frac{D}{P(t)} \]

\(k_p \) is obtained from direct solution of an alternative model or as an intercept of a straight line after dividing both sides of model equation by \(P(t) \)
Alternative calculation of FUR

\[k_{\text{lumped}} \left[\int P(t) \, dt / P(t) \right] + k_P = D / P(t) \]

\[R(t) = Z \int_0^t c(t) \, dt = Zk_P \int_0^t P(t) / V_P \]

Using \(k_P \) and Stewart-Hamilton principle, pure \(R(t) \) can be written in terms of renal clearance \(Z \) and plasma concentration \(k_P \int P(t) / V_P \)
Alternative calculation of FUR

\[k_{\text{lumped}} \left[\int P(t)dt / P(t) \right] + k_P = D / P(t) \]

\[R(t) = Z \int_0^t c(t)dt = Zk_P \int_0^t P(t) / V_P \]

\[R(t) / \int_0^t P(t) = k = k_P Z / V_P \]
Alternative calculation of FUR

\[k_{\text{lumped}} \left[\int P(t) dt / P(t) \right] + k_P = D / P(t) \]

\[R(t) = Z \int_0^t c(t) dt = Zk_P \int_0^t P(t) / V_P \]

\[R(t) / \int_0^t P(t) = k = k_P Z / V_P \]

\[Z / V_P = k / k_P \]

simple expression for renal clearance as fraction of plasma volume per unit time

\[k = \text{uptake const.}, \text{either } k_L, k_R, \text{ or } (k_L+k_R), \]

\[k_P = \text{scaling const. of plasma volumes} \]

\[V_P / V_H \text{ from alternative model} \]
Alternative calculation of FUR

\[k_{\text{lumped}} \left[\int P(t) \, dt / P(t) \right] + k_P = D / P(t) \]

\[R(t) = Z \int_0^t c(t) \, dt = Z k_P \int_0^t P(t) / V_P \]

\[R(t) / \int_0^t P(t) = k = k_P Z / V_P \]

\[Z / V_P = k / k_P \]

\[k_P = D / P(0) \]
Alternative calculation of FUR

\[k_{_\text{lumped}} \left(\int P(t) \, dt / P(t) \right) + k_p = D / P(t) \]

\[R(t) = Z \int_0^t c(t) \, dt = Z k_p \int_0^t P(t) / V_p \]

\[R(t) / \int_0^t P(t) = k = k_p Z / V_p \]

\[Z / V_p = k / k_p \]

\[k_p = D / P(0) \]
Alternative calculation of FUR

\[k_{\text{lumped}} \left[\int P(t) \, dt / P(t) \right] + k_p = D / P(t) \]

\[R(t) = Z \int_0^t c(t) \, dt = Zk_p \int_0^t P(t) / V_p \]

\[R(t) / \int_0^t P(t) = k = k_p Z / V_p \]

\[\frac{Z}{V_p} = \frac{k}{k_p} \]

\[\frac{Z}{V_p} = \frac{k P(0)}{D} = \text{FUR} \]
\[FUR = \frac{Z}{V_P} = \frac{kP(0)}{D} = \frac{P_s(0)}{D} \quad [\%V_p/\text{min}] \]

\[V_P = 1645 \times BSA \quad \text{Dissmann et al, Klin Wschr, 1971} \]

\[Z = V_P \times FUR = 1645 \times BSA \times FUR \quad [\text{ml/min}] \]

\[Z_{\text{norm}} = Z \times 1.73 / BSA \]

\[Z_{\text{norm}} = 1.73 \times 1645 \times BSA \times FUR / BSA \]

\[Z_{\text{norm}} = 2846 \times FUR \quad [\text{ml/min}] \quad \text{- implicitly normalized for body size} \]
Motivation of the study

• is it possible to estimate total (absolute) renal MAG3 clearance in dynamic renal scintigraphy with better accuracy than that provided by current gamma-camera methods (though not as good as that provided by multiple samples)?

• is it possible to perform better when exploiting better detection techniques and data processing methods?
The aim of the study

• clinical validation of fractional uptake rate (FUR) in a clinical setting (routine clinical practice)
• comparison of FUR with currently used methods for measurement of renal function (MAG3 clearance)
• assessment of accuracy of measurement using data acquisition in two opposite projections, data analysis in the geometric-mean image, and application of image-processing procedures minimizing the user's interaction
Patients

- 111 patients (47 men and 64 women)
- age 53 ± 18 (15 - 86) years
- weight 78 ± 19 (45 - 143) kg
- height 168 ± 10 (145 - 192) cm
- BMI 27.7 ± 5.93 (17.36 - 51.89)
- Cr clearance 46 ± 36 (3 - 155) ml/min
- Cr clearance 42 ± 33 (2 - 155) ml/min/1.73m²
- <15 (11), 15-30 (11), 30-60 (16), 60-90 (5), 90< (7)
Methods

• MAG3
 198 ± 26 (145 - 301) MBq
 2.62 ± 0.45 (1.75 - 3.96) MBq/kg

• EDTA
 ≤ 3 MBq (n = 58)

• blood sampling
 40 - 50, 120, and 240 min

• dynamic renal study
 30 min (10" frames)

• images 128 x 128

• posterior + anterior proj.

• 57Co - flood source (n = 80)
Transmission measurement

\[D = \ln\left(\frac{I_1 f}{I_2}\right) / -\mu \]

detector 2

detector 1
Methods

• laboratory data (SCr, 24-hrs creatinine clearance)
• Cockcroft-Gault & MDRD-abbreviated equations
• MAG3 - Russell et al 1989
• Taylor et al (JNM 1995, Radiology 1997)
• fractional uptake rate (FUR) [ml/min]
• criteria of agreement - correlation coefficient, regression coefficients, prediction errors calculated by cross validation
Prediction of creatinine clearance by 51Cr-EDTA and prediction equations

- 1st sample (120 min) $r = 0.82$ MAE = 15 ml/min
- 2nd sample (240 min) $r = 0.89$ MAE = 12 ml/min
- 1+2 samples $r = 0.94$ MAE = 9 ml/min
- Cockcroft-Gault $r = 0.94$ MAE = 9 ml/min
- MDRD - abbrev. $r = 0.91$ MAE = 10 ml/min

r = correlation coefficient
MAE = mean absolute error of prediction [ml/min] obtained by cross-validation
Prediction of creatinine clearance by 51Cr-EDTA and prediction equations

<table>
<thead>
<tr>
<th>24-HRS CR CLEARANCE</th>
<th>< 15 ml/min</th>
<th>≥ 15 ml/min</th>
<th>< 30 ml/min</th>
<th>≥ 30 ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>correlation</td>
<td>r</td>
<td>MAE [ml/min]</td>
<td>r</td>
<td>MAE [ml/min]</td>
</tr>
<tr>
<td>prediction error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA (2 SAMPLES)</td>
<td>0.30</td>
<td>3.86</td>
<td>0.95</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>6.81</td>
<td>0.94</td>
<td>9</td>
</tr>
<tr>
<td>COCKFROFT - GAULT</td>
<td>0.45</td>
<td>3.03</td>
<td>0.92</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>4.39</td>
<td>0.88</td>
<td>12</td>
</tr>
<tr>
<td>MDRD (ABBREVIATED)</td>
<td>0.59</td>
<td>2.75</td>
<td>0.88</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.74</td>
<td>4.42</td>
<td>0.82</td>
<td>14</td>
</tr>
</tbody>
</table>

r = correlation coefficient
MAE = mean absolute error of prediction obtained by cross-validation [ml/min]
Prediction of creatinine clearance by MAG3 in-vitro and camera clearance

- Russell et al 1989 \(r = 0.86 \) \(\text{MAE} = 12 \text{ ml/min} \)
- Taylor et al 1995 \(r = 0.79 \) \(\text{MAE} = 14 \text{ ml/min} \)
- Taylor et al 1995 -vbg \(r = 0.86 \) \(\text{MAE} = 12 \text{ ml/min} \)
- FUR [ml/min] \(r = 0.85 \) \(\text{MAE} = 12 \text{ ml/min} \)
- plasma clearance \(r = 0.83 \) \(\text{MAE} = 13 \text{ ml/min} \)

\(r = \) correlation coefficient
\(\text{MAE} = \) mean absolute error of prediction [ml/min] obtained by cross-validation
Prediction of MAG3 one-sample clearance (Russell et al 1989) by Taylor's method

<table>
<thead>
<tr>
<th>TAYLOR et al 1995</th>
<th>POSTERIOR PROJECTION</th>
<th>GEOMETRIC MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>no bg subtraction</td>
<td>111</td>
<td>0.83</td>
</tr>
<tr>
<td>KD & BT estimated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T & V bg subtracted</td>
<td>111</td>
<td>0.91</td>
</tr>
<tr>
<td>KD & BT estimated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T & V sub. Middleton</td>
<td>111</td>
<td>0.90</td>
</tr>
<tr>
<td>KD estim., BT meas.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prediction of MAG3 one-sample clearance (Russell et al 1989) by Taylor's method

- geometric mean tissue (lateral) and vascular background subtracted
- body thickness estimated
- $n = 111, r = 0.92, MAE = 27 \text{ ml/min}$

- geometric mean tissue and vascular background subtracted (Middleton)
- body thickness measured (flood)
- $n = 80, r = 0.95, MAE = 23 \text{ ml/min}$
Prediction of MAG3 one-sample clearance (Russell et al 1989) by FUR [ml/min]

<table>
<thead>
<tr>
<th>FUR [ml/min]</th>
<th>POSTERIOR PROJECTION</th>
<th>GEOMETRIC MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>r</td>
</tr>
<tr>
<td>no bg subtraction KD & BT estimated</td>
<td>111</td>
<td>0.88</td>
</tr>
<tr>
<td>T & V bg subtracted KD & BT estimated</td>
<td>109</td>
<td>0.89</td>
</tr>
<tr>
<td>T & V sub. Middleton KD estim., BT meas.</td>
<td>111</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Prediction of MAG3 one-sample clearance (Russell et al 1989) by FUR [ml/min]

geometric mean tissue (lateral) and vascular background subtracted
body thickness estimated
n = 109, r = 0.92, MAE = 26 ml/min

geometric mean tissue and vascular background subtracted (Middleton)
body thickness measured (flood)
n = 80, r = 0.94, MAE = 25 ml/min
Distribution of absolute and relative errors of prediction
Prediction of MAG3 gamma-camera clearance (Taylor et al 1995) by FUR [ml/min]

\[FUR [\text{ml/min}] \]

\[\text{Taylor} [\text{ml/min}] \]

\[n = 80, r = 0.9878, y = 17.926 + 0.933x \]

\[m_x = 218.861, s_x = 126.485 (21.062 - 576.285) \]

\[m_y = 222, s_y = 119 (21 - 504) \]

\[\text{MAE} = 10 \text{ ml/min} \]

\[\text{md} = 0, \text{sd} = 0.16 \]

\[\text{normalized (x + y) / 2} \]

\[\text{normalized y - x} \]
Prediction of MAG3 gamma-camera clearance (Taylor et al 1995) by FUR [ml/min]

- **Taylor et al 1995** - regression equation

\[
Z(1-2\text{min}) = 17.6 \left(100 \frac{R(1-2\text{min})}{D}\right) \left(\text{BSA}/1.73\right)+2.5
\]

- validated in 69 patients (Taylor et al 1997) in comparison with multiple sample MAG3 plasma clearance \((r = 0.80 - 0.98)\)

- agreement with one-sample plasma clearance (Russell et al 1989) was significantly improved by using geometric-mean data, measured transmission factors for AC, and vascular background subtraction
Prediction of MAG3 gamma-camera clearance (Taylor et al 1995) by FUR [ml/min]

- **Taylor et al 1995** - regression equation
 \[Z(1-2\text{min}) = 17.6 \left(100 \frac{R(1-2\text{min})}{D}\right) \frac{\text{BSA}/1.73}{1.73} + 2.5 \]

- **FUR (Rutland 1983, 2000, modification 2007)** - physiological model
 \[Z(\text{uptake}) = k \frac{P(0)}{D} = \frac{P_s(0)}{D} \]
 \[P_s(0) = \text{proportional to the integral of } P_s(\text{uptake}) \]
 \[\text{integral of } P_s(\text{uptake}) = R(1-2\text{min}) \]
Conclusions

• mean absolute error of prediction of MAG3 plasma clearance estimated by one-sample method (Russell et al 1989) was
 23 ml/min (r=0.95) - Taylor 1995, 1997
 24 ml/min (r=0.94) - FUR 1983, 2000, modif. 2007

Possible sources of error:
- combined inaccuracy of both types of methods
- higher absolute errors of high clearance values
Conclusions

• mean absolute error of prediction of MAG3 plasma clearance estimated by a gamma-camera method (Taylor et al 1995, 1997) was 10 ml/min ($r=0.99$) - FUR(1983,2000,modif. 2007)

Accuracy of both Taylor's method and FUR can be significantly improved by using geometric mean data, measured transmission factors for AC, and vascular background subtraction.
Conclusions

• measurement of MAG3 renal clearance using gamma camera methods by Taylor 1995 and FUR is sufficiently accurate to provide reliable estimation of total MAG3 renal clearance
• both methods perform equally well
• technical and time requirements for introduction and using either or both the methods in clinical practice including necessary additions (transmission measurements) are minimal