Three year-old male
Left eye proptosis, fever, headache

Isabel Roca
HU Vall Hebron
3 y old male. Left eye proptosis, fever, headache

April 2010: emergency room

- **Cranial US**: retrobulbar mass
- **Abdominal US**: left SR tumor

Left SR mass 2,3 x 3,8 cm

Abdominal US - April 2010
3 y old male. Left eye proptosis, fever, headache

April 2010:
- Bone scintigraphy:
 - Blood pool images
 - 2 hour bone images
- 123I-MIBG
- MRI
- PET-FDG
- Bone marrow +

Bone Scintigraphy
99mTc-DPD – Blood pool images - April 2010
Case 1
3 y old male. Left eye proptosis, fever, headache

April 2010:
- Bone scintigraphy:
 - Blood pool images
 - 2 hour bone images
- 123I-MIBG
- MRI
- PET-FDG
- Bone marrow +

Bone Scintigraphy
99mTc-DPD – 2 h bone images - April 2010
TEACHING POINT

INCREASED UPTAKE IN BLOOD POOL IMAGES = BONE OR BONE MARROW METASTASIS

Sometimes the BM metastasis are better seen in blood pool images.

See vertebrae !!!

Blood pool images

Bone images
3 y old male. Left eye proptosis, fever, headache

April 2010:
- Bone scintigraphy
- 123I-MIBG:
 - tumour uptake
 - multiple bone mets
 - soft tissue mets
 - high uptake
- MRI
- PET-FDG
- Bone marrow +

18 hours post-injection - April 2010
BEFORE TREATMENT ONLY approx. 50% OF NEUROBLASTOMA SHOW BONE SCAN UPTAKE

Bone scan uptake of NBL tumor can be due to Ca++ deposits
April 2010:

- Bone scintigraphy
- 123I-MIBG
- MRI:
 - huge left SR Tm
 - left retrobulbar Tm
 - bone mets
- PET-FDG
- Bone marrow +
April 2010:

- Bone scintigraphy
- 123I-MIBG
- MRI
- PET-FDG:
 - Tm high uptake (borders)
 - multiple bone mets
- Bone marrow +

18F-FDG

April 2010
TEACHING POINT

**DISCORDANCIES BONE SCAN – MIBG
....AND WITH PET-FDG ...AND WITH MRI**

CORRELATIVE IMAGING: anatomic and metabolic images together!

CORRELATIVE IMAGING is our best trick to help the clinician in patient management

<table>
<thead>
<tr>
<th></th>
<th>BLOOD POOL</th>
<th>BONE SCAN</th>
<th>MIBG</th>
<th>PET</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>n.a.</td>
<td>mets</td>
</tr>
<tr>
<td>Long bone</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Vertebræ</td>
<td>mets</td>
<td>neg ?</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Sternum</td>
<td>neg</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Iliac bones</td>
<td>mets</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>number of lesions</td>
<td>>>>></td>
<td>></td>
<td>>>>>></td>
<td>>>>>></td>
<td>>>>>></td>
</tr>
</tbody>
</table>

**DISCORDANCIES BONE SCAN – MIBG
....AND WITH PET-FDG ...AND WITH MRI**

CORRELATIVE IMAGING: anatomic and metabolic images together!

CORRELATIVE IMAGING is our best trick to help the clinician in patient management

<table>
<thead>
<tr>
<th></th>
<th>BLOOD POOL</th>
<th>BONE SCAN</th>
<th>MIBG</th>
<th>PET</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>n.a.</td>
<td>mets</td>
</tr>
<tr>
<td>Long bone</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Vertebræ</td>
<td>mets</td>
<td>neg ?</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Sternum</td>
<td>neg</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Iliac bones</td>
<td>mets</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>number of lesions</td>
<td>>>>></td>
<td>></td>
<td>>>>>></td>
<td>>>>>></td>
<td>>>>>></td>
</tr>
</tbody>
</table>

**DISCORDANCIES BONE SCAN – MIBG
....AND WITH PET-FDG ...AND WITH MRI**

CORRELATIVE IMAGING: anatomic and metabolic images together!

CORRELATIVE IMAGING is our best trick to help the clinician in patient management

<table>
<thead>
<tr>
<th></th>
<th>BLOOD POOL</th>
<th>BONE SCAN</th>
<th>MIBG</th>
<th>PET</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>n.a.</td>
<td>mets</td>
</tr>
<tr>
<td>Long bone</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Vertebræ</td>
<td>mets</td>
<td>neg ?</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Sternum</td>
<td>neg</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Iliac bones</td>
<td>mets</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>number of lesions</td>
<td>>>>></td>
<td>></td>
<td>>>>>></td>
<td>>>>>></td>
<td>>>>>></td>
</tr>
</tbody>
</table>

**DISCORDANCIES BONE SCAN – MIBG
....AND WITH PET-FDG ...AND WITH MRI**

CORRELATIVE IMAGING: anatomic and metabolic images together!

CORRELATIVE IMAGING is our best trick to help the clinician in patient management

<table>
<thead>
<tr>
<th></th>
<th>BLOOD POOL</th>
<th>BONE SCAN</th>
<th>MIBG</th>
<th>PET</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>n.a.</td>
<td>mets</td>
</tr>
<tr>
<td>Long bone</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Vertebræ</td>
<td>mets</td>
<td>neg ?</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Sternum</td>
<td>neg</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Iliac bones</td>
<td>mets</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>number of lesions</td>
<td>>>>></td>
<td>></td>
<td>>>>>></td>
<td>>>>>></td>
<td>>>>>></td>
</tr>
</tbody>
</table>

**DISCORDANCIES BONE SCAN – MIBG
....AND WITH PET-FDG ...AND WITH MRI**

CORRELATIVE IMAGING: anatomic and metabolic images together!

CORRELATIVE IMAGING is our best trick to help the clinician in patient management

<table>
<thead>
<tr>
<th></th>
<th>BLOOD POOL</th>
<th>BONE SCAN</th>
<th>MIBG</th>
<th>PET</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>n.a.</td>
<td>mets</td>
</tr>
<tr>
<td>Long bone</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Vertebræ</td>
<td>mets</td>
<td>neg ?</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Sternum</td>
<td>neg</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>Iliac bones</td>
<td>mets</td>
<td>neg</td>
<td>mets</td>
<td>mets</td>
<td>mets</td>
</tr>
<tr>
<td>number of lesions</td>
<td>>>>></td>
<td>></td>
<td>>>>>></td>
<td>>>>>></td>
<td>>>>>></td>
</tr>
</tbody>
</table>
3 y old male

NEUROBLASTOMA stage IV

23.04.10: Chemotherapy

• HR-NBL-1/ESIOP/COJEC-CURS A

7 cycles between 23.04.10 and 22.06.10

• well tolerated
3 y old male. NEUROBLASTOMA stage IV

July 2010:
- PET-FDG

18F-FDG
July 2010
3 y old male. NEUROBLASTOMA stage IV

PET-FDG
Comparison pre-post chemotherapy:

April/10
July/10

18F-FDG
3 y old male. NEUROBLASTOMA stage IV

July 2010:
- 123I-MIBG
3 y old male. NEUROBLASTOMA stage IV

\(^{123}\text{I}-\text{MIBG}\)

Comparison pre-post chemotherapy:

April/10

August/10
3 y old male. NEUROBLASTOMA stage IV

July 2010:

- MRI left SR Tm marked reduction
- less and smaller bone mets
3 y old male. NEUROBLASTOMA stage IV

July 2010:
- MRI retrobulbar Tm nearly disappear

MRI Comparison pre-post Chemotherapy
April 2010
3 y old male. NEUROBLASTOMA stage IV

SUMMARY - POST-Chemotherapy evaluation:

- PET-FDG: 2 metabolic lesions, right lung
- MIBG: completely normal
- MRI: improvement of residual mass
- Less and smaller but persistent bone mets
3 y old male. NBL stage IV

What to do?

LUNG FDG+ DIPOSITS

1. Right lung biopsy
2. Clinical evaluation
3. Nothing
4. Thorax CT
5. Antibiotic treatment

SUMMARY - POST-CHT evaluation:

• PET-FDG: 2 metabolic lesions, right lung
• MIBG: completely normal
• MRI: improvement
 residual mass
 Less and smaller but persistent mets
3 y old male. NBL stage IV

What to do?

LUNG FDG+ DIPOSITS

1. Right lung biopsy
2. Clinical evaluation: fever and cough the days before PET-CT
3. Nothing
4. Thorax CT 5 weeks later
5. Antibiotic treatment

SUMMARY - POST-CHT evaluation:
- PET-FDG: 2 metabolic lesions, right lung
- MIBG: completely normal
- MRI: improvement
 - residual mass
 - Less and smaller but persistent mets
3 y old male. NEUROBLASTOMA stage IV

- After AB treatment
- Thoracic CT
 18/aug/10
 improvement
Case 1

3 y old male. NEUROBLASTOMA stage IV

- After AB treatment
- Thoracic CT

18/aug/10 improvement

INTERCURRENT LUNG INFECTION
- Improvement with oral AB treatment
- Thorax CT 1 m later: improvement
3 y old male. NBL stage IV

What to do ?

BONE AND TM RESIDUAL MRI LESIONS

1. Repeat bone or tumor biopsy
2. Nothing
3. There is residual viable tumor, new ChT treatment
4. There is no residual viable tumor.

SUMMARY - POST-CHT evaluation:

- PET-FDG: 2 metabolic lesions, right lung
- MIBG: completely normal
- MRI: improvement

 residual mass

Less and smaller but persistent mets
3 y old male. NBL stage IV

What to do?

BONE AND TM RESIDUAL MRI LESIONS

1. Repeat bone or tumor biopsy
2. Nothing
3. There is residual viable tumor, new ChT treatment
4. There is no residual viable tumor.

SUMMARY - POST-CHT evaluation:

- PET-FDG: 2 metabolic lesions, right lung
- MIBG: completely normal
- MRI: improvement
 - residual mass
 - Less and smaller but persistent mets