Short-term effects of treatment of acute malnutrition: examples from Uganda and Burkina Faso

Henrik Friis
University of Copenhagen, Denmark
hfr@nexus.ku.dk
Declaration of potential conflicts of interest

- Has received research grants from ARLA Food for Health, and from Danish Dairy Research Council

- Has research collaboration with food aid manufacturers: GC Rieber Compact, Norway, and Nutriset, France.
Wasting
as defined by weight-for-height Z

Course

Moderate
- \(RR_{Death} = 3 \)
- Survival

Severe
- \(RR_{Death} = 10 \)

Consequences

Short-term
- Development
- Physical activity
- Immunity
- Metabolism

Long-term
- Education
- Working capacity
- Infections
- Chronic diseases

-------- Body composition --------
Acute malnutrition

<table>
<thead>
<tr>
<th></th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>Weight-height Z < -3 OR Arm circumference (mm) < 115 OR Oedema +</td>
</tr>
<tr>
<td>Moderate</td>
<td>Weight-height Z -3 to -2 OR Arm circumference (mm) 115 to 125 & -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence</th>
<th>50+ mill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>?</td>
</tr>
</tbody>
</table>
Acute malnutrition

<table>
<thead>
<tr>
<th></th>
<th>Guidelines</th>
<th>Treatment</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe</td>
<td>+</td>
<td>100% of E</td>
<td>F-75/F-100 LNS</td>
</tr>
<tr>
<td>Moderate</td>
<td>-</td>
<td>50% of E?</td>
<td>CSB?/LNS? Local foods?</td>
</tr>
</tbody>
</table>

CSB: corn-soy blend, given as porridge
LNS: lipid-based nutrient supplement
SAM treatment
an example from Uganda: the FeedSAM study

- Observational study among 122 children with complicated SAM at Mwanamugimu Nutrition Unit, Uganda
- Aim to study refeeding hypophosphataemia or syndrom
- Serum phosphate used as a marker of phosphorus depletion
- At the time of the study, children with diarrhoea were given rice porridge rather than F75/F100 for some days
Changes in plasma phosphate during in-patient treatment of children with severe acute malnutrition: an observational study in Uganda

Hanifa Namusoke,2,6 Anne-Louise Hother,3,6 Maren JH Rytter,3 Pernille Kæstel,3 Esther Babirekere-Iriso,2,5 Christian Fabiansen,3 Tsinuel Girma,4 Christian Ritz,3 Kim F Michaelsen,3 André Briend,3,5 and Henrik Friis3*

2Mwanamugimu Nutrition Unit, Department of Pediatrics, Mulago Hospital, Kampala, Uganda; 3Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; 4Department of Pediatrics and Child Health, College of Public Health and Medical Science, Jimma University, Jimma, Ethiopia; and 5Department of International Health, University of Tampere School of Medicine, Tampere, Finland

![Graph showing changes in plasma phosphate during in-patient treatment](AJCN, 2016)

- **Rapid normalization on F75/F100**
- **Delayed normalization on rice porridge**
Nutrient composition of F-75, F-100, and the rice porridge used during nutritional rehabilitation of children admitted with severe acute malnutrition

<table>
<thead>
<tr>
<th>Composition</th>
<th>F-75</th>
<th>F-100</th>
<th>Rice porridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy, kcal/L</td>
<td>750</td>
<td>1000</td>
<td>490</td>
</tr>
<tr>
<td>Carbohydrate, % of energy</td>
<td>64</td>
<td>45</td>
<td>89</td>
</tr>
<tr>
<td>Protein, % of energy</td>
<td>5</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Fat, % of energy</td>
<td>31</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>Phosphorus, mg/L</td>
<td>560</td>
<td>579</td>
<td>130</td>
</tr>
</tbody>
</table>

1Nutrition information for F-75 and F-100 (Nutriset, France) was obtained from the packages. Nutrition information for the rice porridge was obtained from foodcomp.dk.

2Rice porridge prepared from 200 g white rice flour and 1500 mL water.
Lack of phosphorus during refeeding may result in refeeding syndrome and death

What happens to survivors given inadequate amounts of P and other growth nutrients

Body composition?
Risk of chronic diseases?
MAM treatment
an example from Burkina Faso: The Treatfood trial

- 2x2x3 factorial trial among 1609 children with MAM
- Aim to estimate effects of key factors in food aid products
- Supplements providing 500 kcal/d for 3 months
 - LNS vs CSB
 - Soy isolate vs dehulled
 - Milk contributing 20 or 50 vs 0% of total protein
- Outcomes
 - Primary: fat-free mass index by deuterium dilution
 - Secondary: iron, physical activity, child development etc
TreatFOOD
2x2x3 factorial

Matrix	Soy quality	Milk (% of protein)

R

CSB

LNS

Dehulled
Isolate

Dehulled
Isolate

A | B | C

D | E | F

G | H | I

J | K | L

(Fabiansen, Plos Med, 2017)
Effectiveness of food supplements in increasing fat-free tissue accretion in children with moderate acute malnutrition: A randomised $2 \times 2 \times 3$ factorial trial in Burkina

Christian Fabiansen1,2, Charles W. Yaméogo1,3, Ann-Sophie Iuel-Brockdorf1,2, Bernardette Cichon1,2, Maren J. H. Rytter1, Anura Kurpad4, Jonathan C. Wells5, Christian Ritz1, Per Ashorn6, Suzanne Filteau7, André Briend1,6, Susan Shepherd8, Vibeke B. Christensen2,9, Kim F. Michaelsen1, Henrik Friis1,*

1 Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark, 2 Médecins Sans Frontières—Denmark, Copenhagen, Denmark, 3 Département Biomédical et Santé Publique Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso, 4 Division of Nutrition, St John’s Research Institute, Bangalore, India, 5 Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom, 6 Center for Child Health Research, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland, 7 Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom, 8 Alliance for International Medical Action, Dakar, Senegal, 9 Department of Paediatrics, Rigshospitalet, Copenhagen, Denmark

Changes during intervention

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th>3-month</th>
<th></th>
<th>Difference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>n</td>
<td>Mean</td>
<td>n</td>
<td>Mean</td>
</tr>
<tr>
<td>FFM (kg)</td>
<td>1489</td>
<td>5.79 (0.91)</td>
<td>1425</td>
<td>6.61</td>
<td>1328</td>
<td>0.85</td>
</tr>
<tr>
<td>FM (kg)</td>
<td>1489</td>
<td>1.13 (0.39)</td>
<td>1425</td>
<td>1.19</td>
<td>1328</td>
<td>0.06</td>
</tr>
<tr>
<td>Weight, (kg)</td>
<td>1609</td>
<td>6.91 (0.93)</td>
<td>1548</td>
<td>7.81</td>
<td>1548</td>
<td>0.90</td>
</tr>
<tr>
<td>Weight-for-height Z</td>
<td>1609</td>
<td>-2.22 (0.51)</td>
<td>1548</td>
<td>-1.53</td>
<td>1548</td>
<td>0.68</td>
</tr>
<tr>
<td>MUAC (mm)</td>
<td>1609</td>
<td>122.6 (4)</td>
<td>1548</td>
<td>130.1</td>
<td>1548</td>
<td>7.5</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>1609</td>
<td>70.4 (5.3)</td>
<td>1548</td>
<td>72.9</td>
<td>1548</td>
<td>2.6</td>
</tr>
<tr>
<td>Height-for-age Z</td>
<td>1609</td>
<td>-1.70 (1.1)</td>
<td>1548</td>
<td>-1.86</td>
<td>1548</td>
<td>-0.17</td>
</tr>
</tbody>
</table>

(Fabiansen, Plos Med, 2017)
Main effects

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Soy quality</th>
<th>Milk protein (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNS vs CSB</td>
<td>Isolate vs dehulled</td>
<td>20% vs 0%</td>
</tr>
<tr>
<td>FFMI (kg/m²)</td>
<td>0·083 (0·003; 0·163)</td>
<td>0·097 (-0·002; 0·196)</td>
</tr>
<tr>
<td>FMI (kg/m²)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>FFM (g)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>FM (g)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>Weight-height Z</td>
<td>0·11 (0·04; 0·17)</td>
<td>0·05 (-0·01; 0·11)</td>
</tr>
<tr>
<td>Knee-heel (mm)</td>
<td>0·038 (-0·042; 0·118)</td>
<td>0·049 (-0·047; 0·146)</td>
</tr>
<tr>
<td>MUAC (mm)</td>
<td>0·1 (0·5; 1·6)</td>
<td>0·6 (-0·2; 1·3)</td>
</tr>
<tr>
<td>Triceps (mm)</td>
<td>0·16 (0·06; 0·25)</td>
<td>0·7 (-0·052; 1·4)</td>
</tr>
</tbody>
</table>

LNS vs CSB increased fat-free mass index
Marginal significant effect of 20%, but not 50%, vs 0% of protein from milk

(Fabiansen, Plos Med, 2017)
Primary and other outcomes

- **Fat-free mass index**
 - LNS increased fat-free mass index
 - Marginal significant effect of 20%, but not 50%, vs 0% of protein from milk
 (Fabiansen, Plos Med, 2017)

- **Hemoglobin, iron status and inflammation**
 - LNS increased hemoglobin and iron status
 - No effects of soy isolate and milk
 (Cichon, AJCN, 2018)

- **Physical activity**
 - No effects
 (Yameogo, unpublished)

- **Child development**
 - No effects
 (Olsen and Iuel-Brochdorff, unpublished)
Conclusions

❖ SAM treatment
 ❖ Inadequately fortified foods may contribute to mortality
 ❖ **What is the effect among survivors?**
 ❖ Increased fat accretion and risk of chronic disease?

❖ MAM treatment
 ❖ LNS vs CSB yields more fat-free tissue and better iron status, but not accompanied by functional benefits
 ❖ Soy quality had no effects, but the role of milk merits further research

❖ Not possible to assess overall effect of treatment, but
❖ overall weight gain was predominantly due to fat-free mass
❖ concerns of excessive fat accumulation not justified
Thanks to collaborators ….

Hanifa Namusoke, Esther Babirekere-Iriso, Ezekiel Mupere, Charles Yameogo, Christian Fabiansen, Ann-Sophie Iuel-Brockdorff, Bernardette Cichon, Maren Rytter, Christian Ritz, Mette Frahm Olsen, Kim F Michaelsen, Vibeke B Christensen, André Briend, Anura Kurpad, Jonathan Wells, Suzanne Filteau, Susan Shepherd, Per Ashorn
THANK YOU!