Comparison of points and volumetric doses using CT and MR images for 3D planning brachytherapy: A Brazilian experience

Camila Pessoa de Sales, Heloisa de Andrade Carvalho, Laura Natal Rodrigues

Department of Radiology and Oncology – Radiotherapy
Hospital das Clínicas - University of Sao Paulo, Sao Paulo, Brazil
Introduction

Brachytherapy

- Plays a major role for local control and survival in the treatment of uterine cervix cancer patients
- High effective dose, while minimizing the dose in adjacent normal tissue or organs at risk (OAR)

Image-guided brachytherapy (IGBT)

- Optimizes the cost-benefit ratio between dose at tumor and organs at risk.
- Potential to improve local control and survival in these patients
Methods

12 patients 04/2010 to 09/2010
22 MR and 23 CT taken alternately

3D plans:
TPS
Oncentra
MasterPlan
(Nucletron®)

ICRU points (ICRU 38. 1999)
- Bladder (ICRU\textsubscript{Bladder})
- Rectum (ICRU\textsubscript{Rectum})
- Sigmoid point (Sig)
 (Guimarães. et al. 2009)

OAR volumes
- 0.1 cm3 (D0.1cc)
- 2 cm3 (D2cc)
 (Pötter. et al. 2006)

Treatment
4 x 7 Gy point A
2D Plan

Dosimetric Comparison
Results and Discussion

Comparison of point and volume doses for OAR´s in CT and MR based plans

<table>
<thead>
<tr>
<th>Organ</th>
<th>Dose at points (Gy)</th>
<th>D_{0.1cc} (Gy)</th>
<th>D_{2cc} (Gy)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder</td>
<td>3.7 ± 1.3</td>
<td>9.8 ± 2.4</td>
<td>6.7 ± 1.2</td>
<td>< 0.05#</td>
</tr>
<tr>
<td>Rectum</td>
<td>3.2 ± 0.5</td>
<td>3.7 ± 1.0</td>
<td>2.8 ± 0.6</td>
<td>< 0.05##</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>2.3 ± 0.8</td>
<td>5.6 ± 2.0</td>
<td>3.9 ± 1.1</td>
<td>< 0.05###</td>
</tr>
</tbody>
</table>

Bladder point underestimates the bladder dose: the volume falls over the applicator in a high dose region while the vesical balloon stays in a low dose region
Rectum has less mobility. Therefore the rectum point is more representative of volume dose
Sigmoid has high mobility and the sigmoid point dose did not correspond to the volumetric dose for the organ
Conclusions

• 3D plans based on CT or MR for brachytherapy can help to spare OAR
• CT and MR were equivalent and both can be used to decrease volumetric dose at OAR’s
• 2D points did not show good correlation to volumetric dose
• The implementation of 3D image-guided brachytherapy seems to be very promising in order to improve gynecological brachytherapy treatment technique and patients’ outcomes