Accreditation of Education and Professional Standards of Medical Physicists

Kin Yin Cheung & Slavik Tabakov
International Organization for Medical Physics

IAEA International Conference on Advances in Radiation Oncology, Vienna, 20-23 June 2017
Outline

- Why professional certification of medical Physicists?
- Why international accreditation of medical physicists certification boards?
- Why international accreditation of medical physics educational programme?
- What is the current status?
Quality & Safety in Medicine

All patients deserve the best available medical service within the framework of their healthcare system. Hence,

- Healthcare professionals should perform their duties to the best of their ability & professional judgement within resource constraints
- They should be appropriately qualified to perform their duties
Accuracy Requirement in Dose Delivery in RT

Radiation dose at D represents the optimal balance between local tumour ablation and an acceptable incidence of side effects or complications.

In general, dosimetry error exceeding 5% could affect treatment outcome.

Medical Physicists play a key role in ensuring dose accuracy.
IAEA/WHO TLD Dosimetry Audit on External Beams

8000 radiotherapy machines in 120 countries audited during 1969–2009, about 50% of the machines were found incorrectly calibrated (>5% dose error)- i.e. about 50% of the patients treated were given significantly wrong dosage.

Source: J. Izewska, IAEA
Situation improved since 1990. Currently there are still more than 10% of the IAEA audit RT machines failed to meet the 5% accuracy requirement

Source: J. Izewska, IAEA
Safety in Radiation Medicine

Medical radiation incidents reported in both developed & developing countries. Many might not have been reported.
Radiation Accidents Involving Medical Use

(UNSCEAR 2008 Report, Volume II, Annex C)

Table 10. Numbers of deaths and early acute health effects due to radiation accidents

Based on published information; excludes malicious acts and nuclear testing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidents at nuclear facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 deaths</td>
<td>42 early effects</td>
<td>123 early effects</td>
<td>2 early effects</td>
<td>187 early effects</td>
</tr>
<tr>
<td>34 deaths</td>
<td>3 deaths</td>
<td>61 early effects</td>
<td>6 deaths</td>
<td>9 deaths</td>
</tr>
<tr>
<td>Industrial accidents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 deaths</td>
<td>8 early effects</td>
<td>61 early effects</td>
<td>51 early effects</td>
<td>119 early effects</td>
</tr>
<tr>
<td>3 deaths</td>
<td>6 deaths</td>
<td>6 deaths</td>
<td>9 deaths</td>
<td>9 deaths</td>
</tr>
<tr>
<td>Orphan source accidents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 deaths</td>
<td>5 early effects</td>
<td>98 early effects</td>
<td>205 early effects</td>
<td>308 early effects</td>
</tr>
<tr>
<td>19 deaths</td>
<td>16 deaths</td>
<td>16 deaths</td>
<td>42 deaths</td>
<td>42 deaths</td>
</tr>
<tr>
<td>Accidents in academic/research work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 deaths</td>
<td>2 early effects</td>
<td>22 early effects</td>
<td>5 early effects</td>
<td>29 early effects</td>
</tr>
<tr>
<td>0 deaths</td>
<td>0 deaths</td>
<td>0 deaths</td>
<td>0 deaths</td>
<td>0 deaths</td>
</tr>
<tr>
<td>Accidents in medical use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>470 early effects</td>
<td>153 early effects</td>
<td>623 early effects</td>
</tr>
<tr>
<td>4 deaths</td>
<td>42 deaths</td>
<td>46 deaths</td>
<td>46 deaths</td>
<td>46 deaths</td>
</tr>
</tbody>
</table>

International Organization for Medical Physics
Some Underlying Causes Identified by IAEA

Main causes of accidents:
• Poor QA
• Inadequate staff training (including medical physicist)
• ...

IAEA Recommendations
• Qualified medical physicists
• ...

- But what defines “Qualified”?
IAEA Definition of a MP in Clinical Environment

IAEA International Basic Safety Standard 2014:

“A health professional with specialist education and training in the concepts and techniques of applying physics in medicine and **competent to practice independently** in one or more of the subfields (specialties) of medical physics.”

What are the requirements to become a clinically qualified medical physicist who is competent to practice independently?
What qualifications are required?

Medical physicists, as health professionals, should be educated and clinically trained in a similar manner as other health professionals such as medical doctors, pharmacists, etc.
International Guidance Documents on Requirements for Clinically Qualified Medical Physicist

IOMP guidance document (www.iomp.org):
- IOMP Policy Statement No. 2 (Basic Requirements for Education and Training of Medical Physicists)

IAEA guidance documents (www.iaea.org):
- IAEA HHS No. 25 (Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists)
- IAEA TCS No. 56 (Postgraduate Medical Physics Academic Programmes). This document has incorporated the IOMP Model Curriculum and is endorsed by IOMP.
IOMP Requirements

1 Education requirements:
 • A degree in physics or equivalent academic degree
 • A master’s degree in medical physics or equivalent academic degree in a physical science subject

2 Professional training requirements:
 • > 2 years supervised clinical training on specialty of MP practice in the form of formal residence

3 Professional certification + CPD
Assessing & Qualifying MP in Healthcare - IOMP Recommendations

- Education and clinical training programmes for MP should be subject to independent assessment
- A system for accreditation of MP education programmes should be established in every country
- A system of professional certification and/or registration should be established in every country to qualify MP to practice
- Accreditation/certification should be conducted by an independent board operated by a national professional organization
The Role of International Accreditation Boards

- Provide standards and guidance to national certification or accreditation boards
- Assist national professional organizations to set up national certification or accreditation boards
- Audit or accredit national certification boards to ensure equivalent standards as specified by IOMP are used
- Conduct professional certification of individual MP in countries where setting up of national certification boards is not feasible
- Accredit medical physics education and clinical training programmes
International Medical Physics Certification Board (IMPCB)

- President & Chair of Board of Directors– Prof. Colin Orton
- Established in 2010 as an independent organization (IOMP is the Principle Supporting Organization)
- Objective: Accredit national MP certification programmes and certification of individual MP in accordance with IOMP guidelines
- The first national MP certification boards accredited by IMPCB were carried out during 2015.
- Certification of individual MPs from countries where national boards do not exist is being planned for 2017
The IOMP Accreditation Board

- Chairman: Professor John Damilakis
- Objective: Accreditation of
 - Academic degree programmes in medical physics
 - Medical physics education institutions
 - Professional medical physics training centres
 - CPD events in medical physics
- Pilot accreditation exercise in 2016- accreditation of the ICTP master’s programme in medical physics
- Accreditation of academic programmes open to application in 2017
Acknowledgement

Professor John Damilakis, Chairman of IOMP Education & Training Committee and Chairman of IOMP Accreditation Board for his valuable input.
Thank you!