Addressing Global Radiation Medicine Human Resource Gaps Through Educational Innovation

Dr Meredith Giuliani, MBBS, MEd, FRCPC
Education Director, Princess Margaret Cancer Centre
Meredith.Giuliani@rmp.uhn.on.ca
June 20, 2017
ICARO2 – Abstract 125
Background

New cancer cases will increase by 54% by 2030 unless a huge gap in radiotherapy access around the world is filled for >200,000 new health professionals by 2035 to meet demand. Additional models of education will not meet the demand.
Educational Innovation Concepts

- Professional scopes of practice and task shifting
- Systems-based competency model for curriculum development
- Educational technology to support blended learning
How Did We Get Here?

- How did existing scopes of practice come to exist?
- How do they continue to evolve?
- How do technological innovations disrupt traditional boundaries?
- Regional and international differences can be significant...
Task Shifting?

Task shifting involves appropriate redistribution of tasks among health workforce teams
- Promote more efficient use of the available HHR
Technology drives task shifting
- IGRT implementation
- Regional differences are profound

Emerging Disciplines
Task Shifting?

Task shifting involves appropriate redistribution of tasks among health workforce teams
– Promote more efficient use of the available HHR

Technology drives task shifting
– IGRT implementation
– Regional differences are profound

Emerging Disciplines
The Right Time

Figure 7: Processes, technologies, and professionals involved in radiotherapy

A course of radiotherapy is typically divided into a series of 1–40 fractions depending on the type of cancer and the clinical objective.
The Right Time

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment and prescription</td>
<td></td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Imaging for treatment planning</td>
<td>CT simulator</td>
<td>Radiation technologist</td>
</tr>
<tr>
<td>Treatment volume determination</td>
<td>Planning system</td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Treatment planning</td>
<td>Planning system</td>
<td>Dosimetrist</td>
</tr>
<tr>
<td>Pretreatment review and quality-control checks</td>
<td>Recording and verification</td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Data transfer</td>
<td></td>
<td>Medical physicist</td>
</tr>
<tr>
<td>Treatment-related quality control</td>
<td>Guidance technology</td>
<td>Radiation technologist</td>
</tr>
<tr>
<td>Pretreatment image guidance</td>
<td>Linear accelerator</td>
<td>Medical physicist</td>
</tr>
<tr>
<td>Dose delivery</td>
<td>60Co unit</td>
<td>Service engineer</td>
</tr>
<tr>
<td>On-treatment care</td>
<td></td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Ongoing follow-up</td>
<td></td>
<td>Nurse</td>
</tr>
</tbody>
</table>

Figure 7: Processes, technologies, and professionals involved in radiotherapy. A course of radiotherapy is typically divided into a series of 1–40 fractions depending on the type of cancer and the clinical objective.
Automated Planning Summary

rapid adoption and higher quality
Fast Track RT Process

Harnessing automation, task shifting & team co-ordination

Target Delineation:
• RO to CSRT: 1 day time savings

Planning:
• Dosimetrist to Automation: 3 days saved
Systems-based competency model for curriculum development

- 1900
 - Science based
 - Problem based
 - Systems based
 - 2000+

- Instructional
 - Scientific curriculum
 - University based

- Institutional
 - Problem-based learning
 - Academic centres

- Competency driven: local-global
 - Health education systems

1969
Task-Based Competency Frameworks

<table>
<thead>
<tr>
<th>Process</th>
<th>Technology</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment and prescription</td>
<td>CT simulator</td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Imaging for treatment planning</td>
<td>Planning system</td>
<td>Radiation technologist</td>
</tr>
<tr>
<td>Treatment volume determination</td>
<td>Planning system</td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Treatment planning</td>
<td>Recording and verification</td>
<td>Dosimetrist</td>
</tr>
<tr>
<td>Pretreatment review and quality-control checks</td>
<td></td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Data transfer</td>
<td></td>
<td>Medical physicist</td>
</tr>
<tr>
<td>Treatment-related quality control</td>
<td>Guidance technology</td>
<td>Radiation technologist</td>
</tr>
<tr>
<td>Pretreatment image guidance</td>
<td>Linear accelerator</td>
<td>Medical physicist</td>
</tr>
<tr>
<td>Dose delivery</td>
<td>60Co unit</td>
<td>Service engineer</td>
</tr>
<tr>
<td>On-treatment care</td>
<td></td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td>Ongoing follow-up</td>
<td></td>
<td>Nurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiation oncologist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nurse</td>
</tr>
</tbody>
</table>

Figure 7: Processes, technologies, and professionals involved in radiotherapy. The course of radiotherapy is typically divided into a series of 1–40 fractions depending on the type of cancer and the clinical objective.
Emerging Training Priorities

Healthcare economics
Health information technology
Health systems science
Health policy
Quality & outcomes
Innovation
Change management
Leadership
Humanistic Qualities
Social and Emotional Learning
Emerging Priorities vs Existing Tensions

Program Accreditation Standards

Certification Exams

Standards of Training/Required
Ten Emerging Technologies

- Computerized Grading
- Electronic Textbooks
- Simulation Technology
- Gamification
- Equipped Classrooms
- Active Learning Classrooms
- Massive Open Online Courses
- Collaborative Distance Learning Environments
- Active Learning Forum™ platform
- Learning Management Systems
Blended Learning & Sustainability

Blended learning approaches:
- Maximize learning opportunities & equity
- Promote decentralization
- Sharing of educational resources as global public goods
- Standardization with local customization
- Promote loco-regional retention
- Foster team-oriented, collaborative environments

The Traditional Classroom
Teacher’s Role: Sage on the Stage

LECTURE TODAY Homework
Reading and questions for tomorrow

The Flipped Classroom
Teacher’s Role: Guide on the Side

ACTIVITY TODAY WATCH lecture online tonight!
The Walled Garden Problem
Conclusions

- Task shifting models should be explored using local contextual information & global training standards
- New competency profiles require attention to emerging training priorities
- Global consortia of educational institutions may be able to address “walled garden problems” and facilitate educational products as global public goods