Cost-effective public procurements of equipment for radiotherapy: starting point of patient's safety

Božidar Casar

Institute of Oncology Ljubljana
Slovenia
Public procurements of radiotherapy equipment

Radiotherapy equipment:

• Complex technology
• High initial costs and later maintenance costs
• High demands on up-time and performance during eq. lifetime

Public procurement committee:

• Involvement of senior professionals from the field:
 ➢ Radiation oncologist
 ➢ Medical physicist
 ➢ Radiotherapy technologist
• Involvement of hospital management
• Team work of all committee members
• High integrity of every single team member
Medical Physics Experts

European Union Council Directive 2013/59/EURATOM, Article 83:

• “Member States shall ensure that depending on the medical radiological practice, the medical physics expert takes responsibility for dosimetry, including physical measurements for evaluation of the dose delivered to the patient and other individuals subject to medical exposure, give advice on medical radiological equipment, and contribute in particular to the following:

 • (d) the preparation of technical specifications for medical radiological equipment and installation design;
Purchase of medical radiological equipment

• “The preparation of **technical specifications** for medical radiological equipment and installation design.”

• Preparation of the **system** for the evaluation of offers

• **Evaluation/scoring** of offers
Public tender documentation

• equipment and its functionality has to be clearly and unambiguously specified;
• it should reflect hospitals’ needs;
• it should be structured in such a way to eliminate the possibility of unreasonably high prices of the equipment or post-warranty maintenance

Therefore

• It should contain a transparent, fair and easy understandable system for the numerical evaluation - scoring of offers
Post-warranty maintenance

- Tender documentation should contain a written sample of maintenance contract
- If agreed down-time would be exceeded – a clear system for penalties shall be presented to all bidders in advance;

HIGH UP-TIME (> 98%)
Post-warranty maintenance

• Tender documentation should contain a written sample of maintenance contract
• If agreed down-time would be exceeded – a clear system for penalties shall be presented to all bidders in advance;

LOW UP-TIME (< 98%)
Calculation of received points

<table>
<thead>
<tr>
<th></th>
<th>NUMBER OF POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOT NORMALIZED</td>
</tr>
<tr>
<td>EQUIPMENT’S PRICE PART</td>
<td>$T_{A,i,1} = \sum_{k=1}^{n} \frac{P_k}{P_i \cdot n}$</td>
</tr>
<tr>
<td>MAINTENANCE PART</td>
<td>$T_{B,i,1} = \sum_{k=1}^{n} \left(\frac{M}{P} \right)_k$</td>
</tr>
<tr>
<td>∑$_i T$ for i-th offer</td>
<td>$T_{A,i,2} + T_{B,i,2}$</td>
</tr>
</tbody>
</table>
Calculation of received points

<table>
<thead>
<tr>
<th>NUMBER OF POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT NORMALIZED</td>
</tr>
<tr>
<td>EQUIPMENT’S PRICE PART</td>
</tr>
<tr>
<td>$T_{A,i,1} = \sum_{k=1}^{n} \frac{P_k}{P_i} \cdot n$</td>
</tr>
<tr>
<td>MAINTENANCE PART</td>
</tr>
<tr>
<td>$T_{B,i,1} = \sum_{k=1}^{n} \left(\frac{M}{P} \right)_k \cdot \frac{M}{P_i} \cdot n$</td>
</tr>
</tbody>
</table>

$\sum_{i} T$ for i-th offer $T_{A,i,2} + T_{B,i,2}$

$T_{A,i,1}$: number of un-normalized points for i-th bidder

$T_{A,i,2}$: number of normalized points for i-th bidder

$T_{A,\text{max},1}$: maximal number of un-normalized points for certain bidder

P_i: price of the equipment of i-th bidder

M: price of the post-warranty maintenance contract for 5 years

n: number of bids

a, b: constants chosen by the hospital

$a + b = 100$

a is the fraction which corresponds to the price of the equipment

b is the fraction which corresponds to the price of five years post-warranty maintenance contract

Range of selectable parameters a and b:

$60 \leq a \leq 80$ and $20 \leq b \leq 40$

Depends on the radiological equipment (CT, MRI, LINAC, PET CT, US, ...) and the type of the maintenance contract (full/not full)
„Penalty functions“ $F(x_P)$ and $F(x_M)$

\[
F(x_P) = e^{-\frac{(x_P-a)^4}{4\cdot\sigma^4}} \quad \mid \quad F(x_M) = e^{-\frac{(x_M-b)^4}{4\cdot\sigma^4}}
\]

Properties:

- Centered at the two selected parameters a and b
- Deviations from a and b result in lower number of received points for selected bid
- Functions are broad enough („broader gauss“) – penalties are modest/negligible, if the deviations are small
Still complex?

A Comparative Study of Formulas for Choosing the Economically Most Advantageous Tender

Stan Stilger (przemyslaw.stilger@postgrad.mbs.ac.uk)
Manchester Business School, University of Manchester

Jan Siderius
Negometrix

Erik M. van Raaij
Rotterdam School of Management, Erasmus University

where α is a user-defined parameter.
Conclusions

- Governing public procurements of expensive radiotherapy equipment is a demanding task for hospitals
- Fragile equilibrium between quality and price
- Optimized approach can save money while maintaining the quality of the radiological equipment
- Remaining resources can be invested in additional equipment raising the overall quality and safety of health care
- Quality and price of the post-warranty maintenance shall be considered as parameters which are of comparable importance as the price of the equipment itself

However

There is no perfect scoring system for the evaluation of bids
THANK YOU!