EPR-dosimetry, harmonization of techniques

Biological dosimetry in Atomic bomb survivors

Yoshiaki Kodama
Cytogenetics, Department of Genetics
Radiation Effects Research Foundation (RERF)
Hiroshima, Japan

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Biological dosimetry in A-bomb survivors

- **Chromosome study**
 - Conventional Giemsa staining study (1968-1993)
 - Fluorescence in situ hybridization (FISH) study (1994-)

- **Electron paramagnetic resonance (EPR) study** (1992-)

Purpose: to provide information to confirm or improve our current estimates of individual doses, which are used to evaluate both cancer and non-cancer risks of A-bomb radiation exposures.
Conventional Giemsa staining

- Most basic staining method
- Homogeneous staining
 Appropriate for the analysis of number and shape of the chromosome
 Biodosimetric study
 (detection of dic chromosome)

FISH technique

- Chromosome specific DNA probes
- Quick and accurate detection of translocations
 Retrospective biodosimetry
 (detection of t chromosome)
Chromosome study of A-bomb survivors had initiated at 1968.

Most of **unstable type** aberrations disappeared from the lymphocytes of survivors and only **stable type** aberrations remained.

Exchanges

<table>
<thead>
<tr>
<th>Intra-chromosomal</th>
<th>Inter-chromosomal</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring+fragment (r + ace)</td>
<td>Dicentric+fragment (dic + ace)</td>
<td>Unstable type</td>
</tr>
<tr>
<td>Pericentric inversion (inv)</td>
<td></td>
<td>Easy to detect but unstable Over time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stable type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult to detect but stable over time</td>
</tr>
</tbody>
</table>

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Unstable type aberrations (dic, r)

Stable type aberrations (t, inv)

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
How to detect stable chromosome aberrations by conventional Giemsa staining method under microscope

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
How to detect stable chromosome aberrations by conventional Giemsa staining method under microscope

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima

* http://www.rerf.or.jp/Gene/eng/ giemsa.htm

t(Cp+;Dq-)
“It has already been stressed that Cs cells can only be detected with very low efficiency” UNSCEAR Report (1969)

“Obvious symmetrical interchange can be recorded but the analysis is time consuming and it not recommended.” “Reciprocal translocations are particularly difficult to observe in conventionally stained preparations….. There is somewhat increase in resolution when banded…. but even then the efficiency …. is around 50%…. ” IAEA Technical Report No. 260 (1986)
Conventional method; 46,XX, Normal

G-banding method; 46,XX,t(2q-;6p+)

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Reproducibility of conventional chromosome analysis for stable-type aberrations (Cs cells)

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Comparison of translocation frequencies

Conventional Giemsa staining method can detect about 70% of translocations

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Chromosome study by Giemsa staining

- Why the distribution is so wide?
- City difference is real?

95% prediction limits of sampling error

Sampling error + 50% CV in dose estimation

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima

Kodama et al, Radiat Res 2001
Cytogenetic techniques

Translocation analysis by Giemsa staining method (1968-1993)

FISH can detect translocation rapidly and objectively (1994-)

Painted chromosomes: #1, #2, #4
No of cells scored: 500*

*All measurements were done in Hiroshima laboratory.

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation

J. N. LUCAS¹, A. AWA², T. STRAUME¹, M. POGGENSEE¹, Y. KODAMA², M. NAKANO², K. OHTAKI², H.-U. WEIER³, D. PINKEL³, J. GRAY³, and G. LITTLEFIELD⁴

Abstract. This paper presents an analysis of the utility of fluorescence in situ hybridization (FISH) with whole chromosome probes for measurement of the genomic frequency of translocations found in the peripheral blood of individuals exposed to ionizing radiation. First, we derive the equation: \(F_p = 2 \times 0.05 f_p (1 - f_p) F_G \), relating the translocation frequency, \(F_p \), measured using FISH to the genomic translocation frequency, \(F_G \), where \(f_p \) is the fraction of the genome covered by the composite probe. We demonstrate the validity of this equation by showing that: (a) translocation detection efficiency predicted by the equation is consistent with experimental data as \(f_p \) is changed; (b) translocation frequency dose-response curves measured in vitro using FISH agree well with dicentric frequency dose-response curves measured in vitro using conventional cytogenetic procedures; and (c) the genomic translocation frequencies estimated from FISH measurements for 20 Hiroshima A bomb survivors ….
Estimation of translocation frequency by FISH (1)

\[FG = \frac{FP}{2.05 \times fp} \times (1 - fp) \]

\(FG \): full genome aberration frequency
\(FP \): translocation frequency measured by FISH
\(fp \): fraction of genome painted
\(2.05 \): coefficient excluding exchanges within the same chromosome

\(FG = 2.81 \times FP \) (female)
\(2.77 \times FP \) (male)

Chromosomes 1+2+4 = 22%
500 cells = 178 cell equivalent

*Cytogenetic dosimetry: Applications in preparedness for and response to radiation emergencies, pp87-89, IAEA, 2011

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Estimation of translocation frequency by FISH (2)

3 color FISH

#1:red、#2:green、#4:white (DAPI:blue)

\[F_G = \frac{F_P(1+2+4)}{2.05} \left[f_1(1-f_1)+f_2(1-f_2)+f_4(1-f_4) - (f_1f_2+f_1f_4+f_2f_4) \right] \]

(Lucas et al, Cytogenet Cell Genet 62:11-12, 1993)
(IAEA manual 2011, Cytogenetic Dosimetry, pp 87-)

\[F_G = F_P \times 2.567 \text{ (female, } f_p=0.2234^*) \]
\[F_G = F_P \times 2.533 \text{ (male, } f_p=0.2271^*) \]

(*IAEA manual 2011, Table 2)

500 cells = 196 cell equivalent

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Type of translocations by FISH

Two way

One way

Translocated segment is too small to detect

Type 1 (70%~)

Type 2 (20%~)

Type 3 (~5%)

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Detection of translocations by FISH

Number of color Junctions = 5
3 translocations

*PAINT system
(Tucker et al, Cytogenet Cell Genet 68:211-221, 1995)
Translocation frequencies in control population by FISH

Sigurdson et al, Mutat Res, 652:112-121, 2008, Fig. 2.

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Translocation frequencies in control population by FISH

Sigurdson et al, Mutat Res, 652:112-121, 2008, Fig. 4.

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Table 1a. Translocation frequencies in A-bomb survivors measured by FISH for chromosomes 1, 2 and 4 and by G-banding (Lucas et al., 1992)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Dose* (Sv)</th>
<th>Cells</th>
<th>Translocations total(#1,#2,#4)</th>
<th>Trans/cell (genomic)</th>
<th>Cells</th>
<th>Translocations</th>
<th>Trans/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>H6549</td>
<td>2.22</td>
<td>490</td>
<td>31 (10,7,14)</td>
<td>0.179</td>
<td>100</td>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>H6550</td>
<td>0</td>
<td>2027</td>
<td>5 (4,0,1)</td>
<td>0.007</td>
<td>100</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>H6551</td>
<td>1.63</td>
<td>824</td>
<td>49 (20,14,15)</td>
<td>0.168</td>
<td>100</td>
<td>16</td>
<td>0.16</td>
</tr>
<tr>
<td>H6770</td>
<td>0.62</td>
<td>455</td>
<td>16 (8,2,6)</td>
<td>0.099</td>
<td>100</td>
<td>5</td>
<td>0.05</td>
</tr>
<tr>
<td>H6579</td>
<td>1.06</td>
<td>284</td>
<td>19 (4,6,9)</td>
<td>0.189</td>
<td>100</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>H6580</td>
<td>2.61</td>
<td>178</td>
<td>19 (4,8,7)</td>
<td>0.302</td>
<td>100</td>
<td>37</td>
<td>0.37</td>
</tr>
<tr>
<td>H6584</td>
<td>0.66</td>
<td>687</td>
<td>15 (6,4,5)</td>
<td>0.062</td>
<td>100</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>H6585</td>
<td>1.32</td>
<td>343</td>
<td>17 (7,6,4)</td>
<td>0.140</td>
<td>97</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>H6615</td>
<td>2.31</td>
<td>141</td>
<td>29 (11,8,10)</td>
<td>0.582</td>
<td>100</td>
<td>72</td>
<td>0.72</td>
</tr>
<tr>
<td>H6616</td>
<td>1.94</td>
<td>743</td>
<td>16 (6,7,3)</td>
<td>0.061</td>
<td>100</td>
<td>6</td>
<td>0.06</td>
</tr>
<tr>
<td>H6617</td>
<td>4.82</td>
<td>216</td>
<td>23 (8,10,5)</td>
<td>0.301</td>
<td>100</td>
<td>44</td>
<td>0.44</td>
</tr>
<tr>
<td>H6688</td>
<td>1.46</td>
<td>375</td>
<td>16 (4,9,3)</td>
<td>0.121</td>
<td>100</td>
<td>7</td>
<td>0.07</td>
</tr>
<tr>
<td>H6690</td>
<td>1.86</td>
<td>146</td>
<td>39 (14,11,14)</td>
<td>0.756</td>
<td>97</td>
<td>90</td>
<td>0.93</td>
</tr>
<tr>
<td>H6708</td>
<td>0</td>
<td>813</td>
<td>4 (2,1,1)</td>
<td>0.014</td>
<td>100</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>H6718</td>
<td>2.22</td>
<td>178</td>
<td>26 (6,12,8)</td>
<td>0.413</td>
<td>100</td>
<td>46</td>
<td>0.46</td>
</tr>
<tr>
<td>H6722</td>
<td>1.84</td>
<td>205</td>
<td>18 (9,4,5)</td>
<td>0.248</td>
<td>100</td>
<td>29</td>
<td>0.29</td>
</tr>
<tr>
<td>H6723</td>
<td>0.96</td>
<td>416</td>
<td>16 (9,1,6)</td>
<td>0.109</td>
<td>100</td>
<td>17</td>
<td>0.17</td>
</tr>
<tr>
<td>H6725</td>
<td>1.42</td>
<td>378</td>
<td>33 (10,13,10)</td>
<td>0.247</td>
<td>100</td>
<td>41</td>
<td>0.41</td>
</tr>
<tr>
<td>H6728</td>
<td>0.86</td>
<td>530</td>
<td>14 (8,4,2)</td>
<td>0.075</td>
<td>100</td>
<td>14</td>
<td>0.14</td>
</tr>
<tr>
<td>H6731</td>
<td>1.30</td>
<td>105</td>
<td>16 (10,3,3)</td>
<td>0.431</td>
<td>100</td>
<td>44</td>
<td>0.44</td>
</tr>
</tbody>
</table>

*Dose to bone marrow assuming DS86 dosimetry and a neutron RBE of 10.

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
Comparison of genomic translocation frequencies

FISH results fit well with G-banding results

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
To examine the difference in translocation dose responses between Hiroshima and Nagasaki survivors under different shielding categories.
Summary

- Highly significant and nonlinear dose responses were observed in both Hiroshima and Nagasaki.

- A wide scatter of individual translocation frequencies against physical dose was observed as seen in the previous Giemsa staining study. This suggests the dose errors in DS02 dose estimates in some survivors.

- Difference between Hiroshima and Nagasaki was much reduced suggesting the large city difference in the past study was mainly due to different aberration detection rates between Hiroshima and Nagasaki laboratories.

- Both people exposed outside but shielded by houses and Nagasaki factory workers had significantly lower dose responses than people who were exposed inside Japanese houses.
Why physical dose does not fit well with chromosome data?

- Observer biases in chromosome study?
- Different radiation sensitivity?
- Dosimetry errors?
- Errors in interview records?

Estimate the radiation dose by a method totally independent from cytogenetic measurement.
Biological dosimetry

- Chromosome study
 - Conventional Giemsa staining study (1968-1993)
 - Fluorescence in situ hybridization (FISH) study (1994-

- Electron paramagnetic resonance (EPR) study (1992-

Purpose: to clarify the variation of cytogenetic data against physical dose
The major component of enamel is hydroxyapatite. After irradiation, CO_2^- radicals are formed, which can be measured by EPR.
EPR signal looks like this

Selective saturation method is used for subtraction of the background signal from EPR spectrum of tooth enamel.

\[
\text{EPR signal intensity} = (16\text{MW} - 0.4\text{MW})
\]

Kodama Y., IAEA Training Meeting, June 10-14, 2013, Hiroshima
A calibration curve was done by preparing pooled enamel from 20 molars donated by residents of Fukushima prefecture (located in northern Japan). This pooled sample was then divided into 20 aliquots, and each aliquot was irradiated with a defined dose of 60Co gamma radiation to construct a calibration curve.
EPR-estimated doses in types of teeth

n= 96 teeth from 53 survivors (control group with doses <5 mGy)
Preparation of enamel

- Donor age at the time of bomb were ≥ 10.
- Donors who received radiotherapy were excluded.
- Molars were used.
- Each tooth was divided in two halves (buccal and lingual portions).
- Enamel from two sites was separated independently.
- Enamel was ground (about 500mm), and measured by EPR.
Evaluation of individual radiation doses of tooth enamel from Hiroshima atomic bomb survivors by EPR
Comparison of the EPR dose with Chromosome dose of the same survivors confirmed their close association.

The results turned out to validate the chromosome aberration data to be useful for individual dose estimation.

Wide distribution of individual chromosome dose against DS02 dose seems to be related dose errors rather than individual difference in radiosensitivity of lymphocytes.

Both EPR and chromosome doses deviated substantially from individual DS02 doses. This suggests the dose errors from physical estimates in a fraction of survivors.